- 陶小凡
-
最新证明
孪生素数分布表
以6(6N^2+6N)为界划分的一个区间(以孪中为准,含3,)
SN 对数 最后一对
s 1 8 73 71
s 2 7 199 197
s 3 8 433 431
s 4 7 661 659
s 5 9 1063 1061
s 6 11 1489 1487
s 7 11 1999 1997
s 8 13 2593 2591
s 9 10 3169 3167
s 10 19 3931 3929
s 11 19 4723 4721
s 12 14 5521 5519
s 13 15 6553 6551
s 14 20 7561 7559
s 15 14 8629 8627
s 16 18 9769 9767
s 17 18 10939 10937
s 18 20 12253 12251
s 19 11 13681 13679
s 20 20 14869 14867
s 21 20 16633 16631
s 22 28 18133 18131
s 23 19 19843 19841
s 24 29 21601 21599
s 25 26 23371 23369
s 26 16 25171 25169
s 27 23 27109 27107
s 28 28 29209 29207
s 29 23 31321 31319
s 30 32 33349 33347
s 31 30 35593 35591
s 32 25 37993 37991
s 33 23 40153 40151
s 34 28 42841 42839
s 35 28 45343 45341
s 36 25 47809 47807
s 37 37 50593 50591
s 38 30 53281 53279
s 39 26 56101 56099
s 40 34 59023 59021
s 41 25 61981 61979
s 42 27 64921 64919
s 43 31 68113 68111
s 44 37 71261 71263
s 45 32 74509 74507
s 46 33 77713 77711
s 47 37 81199 81197
s 48 37 84631 84629
s 49 38 88003 88001
s 50 35 91573 91571
s 51 43 95443 95441
s 52 41 99139 99137
s 53 34 102931 102929
s 54 39 106861 106859
s 55 36 110881 110879
s 56 40 114799 114797
s 57 43 118903 118901
s 58 46 122869 122867
s 59 34 127291 127289
s 60 42 131713 131711
s 61 44 136069 136067
s 62 35 140551 140549
s 63 40 145009 145007
s 64 47 149731 149729
s 65 51 154279 154277
s 66 43 159193 159191
s 67 46 163993 163991
s 68 36 168901 168899
s 69 37 173779 173777
s 70 55 178909 178907
s 71 56 183973 183971
s 72 44 189151 189149
s 73 46 194269 194267
s 74 46 199753 199751
s 75 47 205033 205031
s 76 53 210601 210599
s 77 34 215983 215981
s 78 53 221719 221717
s 79 51 227473 227471
s 80 55 233161 233159
s 81 47 238921 238919
s 82 42 244861 244859
s 83 54 250969 250967
s 84 47 256903 256901
s 85 45 262783 262781
s 86 65 269221 269219
s 87 50 275593 275591
s 88 51 281923 281921
s 89 55 288361 288359
s 90 46 294649 294647
s 91 56 301363 301361
s 92 56 307873 307871
s 93 59 314599 314597
s 94 61 321469 321467
s 95 72 328129 328127
s 96 59 335173 335171
s 97 45 342073 342071
s 98 56 349081 349079
s 99 56 356263 356261
s 100 61 363439 363437
s 101 44 370873 370871
s 102 53 378151 378149
s 103 57 385591 385589
s 104 63 393079 393077
s 105 57 400681 400679
2015年孪生素数猜想初等证明
关健词:完全不等数,SN区间,LN区间.
一。素数两性定理
大于3的素数只分布在6n-1和6n+1两数列中。
6n-1数列中的合数叫阴性合数,其中的素数叫阴性素数;6n+1数列中的合数叫阳性合数,其中的素数叫阳性素数。
阴性合数定理
6[6NM+(M-N)]-1=(6N+1)(6M-1)
6[6NM-(M-N)]-1=(6N-1)(6M+1)
在6n-1数列中只有这两种合数,余下就是阴性素数了,所以就有阴性素数定理
6NM+-(M-N)=/=x(阴性不等数)
6x-1=q(阴性素数)
阳性合数定理
6[6NM+(N+M)]+1=(6N+1)(6M+1)
6[6NM-(N+M)]+1=(6N-1)(6M-1)
在6n+1数列中只有这两种合数,余下就是阳性素数了,所以就有阳性素数定理
6NM+-(N+M)=/=X(阳性不等数)
6X+1=P(阳性素数)
(N M两个自然数 N《= M)
二。与孪生素数相对应的完全不等数
完全不等数(X),它既不等于阴性上下两式;也不等于阳性上下两式。
(X)=/=6NM+-(M+-N)
则有 6(X)+1=P 6(X)-1=q
一个完全不等数所产生的阴性素数q和阳性素数P就是一对孪生素数.
并且完全不等数与孪生素数是一一对应的.
三。阴阳四种等数在自然数列中的分布概况
6NM+(M-N)=阴性上等数 6NM-(M-N)=阴性下等数
6NM+(N+M)=阳性上等数 6NM-(N+M)=阳性下等数
为了搞清它们在自然数中分布情况,把四式中的N叫级别因子数,M叫无限因子数。
四种等数的每一个级别的最小等数都在6NN+-(N+N)范围。
每一级别的上等数相邻两等数距离是6n+1,在自然数列中比例是1/(6n+1),两种上等数每个级别的比例合计是2/(6n+1),(但实际是略少于这个比例因每一级别的底部都没有这个级别的上等数;下等数也一样的情况。)
每一级别的下等数相邻等数的距离是6n-1,在自然数列中的比例是1/(6n-1),阴阳两种下等数的每个级别的合计比例是2/(6n-1)。
每个级别的四种等数在自然数列中的比例是24N/[(6N+1)(6N-1)].
四。四种等数大小数列的互相渗透
自然数列中有阴性上等数数列,阴性的下等数数列,阳性上等数数列和阳性下等数数列。它们的级别有无限多,每一个级别的数列的等数都是无限多的。同一种等数级别不同的数列都是互相渗透而产生重叠,并以两级别的等数距离的乘积而严格地重叠的。在计算一种若干的级别的等数时用连乘式正好可以表示它的渗透重叠关系。四种等数数列之间都有互相渗透而重叠,只有同一级别阴阳上上数列.下下数列没有渗透.四种数列之间的渗透重叠不用计算也足够可以证明了。
五。与素数分布基本同步的SN区间
把自然数划分成12,24,36……以12为递增的一个个区间,这样的区间叫SN区间。SN区间与四种等数数列是同步的,即:
12(1+2+3+……+N)=6NN+6N
在这样的区间内包括N级别及以下的所有四种等数数列的等数,并没有比N级别大的数列等数,与四种等数的级别是完全同步的,所以与素数的分布也是同步的。
六。每个大于S8区间内都有8个以上的完全不等数
在每一个SN区间只有存在1至N级别的四种数列等数,每一级别等数的比例是可以确定,由于上下级别的渗透。就可以拿以下式来计算S8区间的完全不等数的至少个数。
12*8*11/35*95/143*251/323*479/575*779/899*1151/1295*1593/1763*2111/2303=8.2768
其他每一个SN区间可用这种方法计算.
随着区间的增大完全不等数计算的数量也会越来越多.以后都会超过8个.
七。误差分析
用最严格下取整的误差分析方法,将SN区间捆绑成1,2,4,8,16......2^(N-1)的LN区间.在每一个大于S8的SN区间计算都大于8个完全不等数,在每一个LN区间都有2^N-1级别等数数列, 每级级别有4种等数数列,每一级别一种等数筛一次误差极限是1 .每一个LN区间误差极限是4*(2^N-1).
8*2^(N-1)-4*(2^N-1)=4
最严格下取整后大于L4的区间仍然还有4个完全不等数。
八。总结
根据以上的论证,在大于S8区间每一个SN区间都有8个以上的完全不等数.
严格的下取整后,大于L4的每一个LN区间都还有多于4个的完全不等数以上的量。
LN区间是无限多的,完全不等数与孪生素数对是一一对应的,所以孪生素数也是无限多的.
素数——那些因数除了1就是他们本身的数们——就像代数的原子一样。从欧几里得——他在2000年前证明了素数有无穷多个——开始,它们就让无数数学家们为之倾倒。
因为素数从根本上和乘法相关,理解他们和加法相关的性质就变得很困难。一些数学上最古老的未解之谜就和素数和加法相关,其中之一就是孪生素数猜想——存在无限多组差为2的素数对。另一个则是哥德巴赫猜想,这个猜想提出所有的偶数都可以表示为两个素数之和。
在自然数列的起始部分存在着大量的素数,但是 随着数字变大,他们变得原来越稀少。举例来说,在前10个自然数里,40%都是素数——2,3,5和7——但是在所有的10位数里,仅有4%的数是素数。 在过去的一个世纪里,数学家们掌握了素数减少的规律:在大数中,连个素数之间的间隔大约是位数的2.3倍。举例说明,在100位的数中,两个素数的平均间隔大约是230。
但是这只是平均而言。素数通常比平均预计的更加紧密的出现,或者相隔更远。具体来说,“孪生”素数通常扎堆出现,比如3和5还有11和13,他们的差仅为2。而在大数中,孪生素数似乎从没有完全消失(目前发现的最大的孪生素数是3,756,801,695,685×2666,669-1和3,756,801,695,685×2666,669+1)。
1849年,法国数学家阿尔方·波利尼亚克提出了“波利尼亚克猜想”:对所有自然数k,存在无穷多个素数对(p,p+2k)。k等于1时就是孪生素数猜想,而k等于其他自然数时就称为弱孪生素数猜想(即孪生素数猜想的弱化版)。因此,有人把波利尼亚克作为孪生素数猜想的提出者。
从那时开始,这些猜想的内在吸引力冠予了它们数学的圣杯的称号,虽然他们可能没有实际的应用价值。虽然有很多数学家们致力于证明这一猜想,他们还是不能排除素数的间隔会一直增长最终超过一个特定上限的可能。
1921年,英国数学家戈弗雷·哈代和约翰·李特尔伍德提出一个与波利尼亚克猜想类似的猜想,通常称为“哈代-李特尔伍德猜想”或“强孪生素数猜想”(即孪生素数猜想的强化版)。这一猜想不仅提出孪生素数有无穷多对,而且还给出其渐近分布形式。
2013年5月,张益唐在孪生素数研究方面所取得的突破性进展,他证明了孪生素数猜想的一个弱化形式。在最新研究中,张益唐在不依赖未经证明推论的前提下,发现存在无穷多个之差小于7000万的素数对,从而在孪生素数猜想这个重要问题的道路上前进了一大步。
张益唐的论文在5月14号在网络上公开,5月21日正式发表 。5月28号,这个常数下降到了6000万。仅仅过了两天的5月31号,下降到了4200万。又过了三天的6月2号,则是1300万。次日,500万。6月5号,40万。
在英国数学家Tim Gowers等人发起的“Polymath”计划中,孪生素数问题成为了一个在全球数学工作者中利用网络进行合作的一个典型。人们不断的改进张益唐的证明,进一步拉近了与最终解决孪生素数猜想的距离。在2014年2月,张益唐的七千万已经被缩小到246。
- 左迁
-
如果你能把张益唐教授的246通过选取恰当的函数值缩小到2,孪生素数猜想就得到证明了,然而很遗憾,还是246,如果孪生素数猜想成立,那么从这个1推广到无穷大就是波利尼亚克猜想,然而孪生素数猜想属于波利尼亚克猜想的弱猜想,它成立的话,不代表波利尼亚克猜想成立,但目前这些还不确定。
- ardim
-
作者:善良的宋兰 时间:2017-12-14 19:52:40
一个清晰的数学公式
中国预印本.数学序号:1286第86-92页,给出了哥德巴赫猜想的证明(证明了一个比"哥猜"强很多的命题).另外还给出了证明孪生素数猜想的一个清晰的数学公式及其简单高效的计算方法.如果连续使用此公式不断计算下去就可一个不漏的得到所有的孪生素数对.
学数学的人都知道:数学是没有国界的,也是不讲私情的,对就是对,错就是错.数学史告诉我们,那怕你是世界顶级的高手也无法改变这条真理.作者欢迎全数学界的朋友来质疑,评论和使用这个公式.
作者还想在此表示一个歉意,从2012年9月11日起中国预印本.数学曾以序号: 669, 775,1112,1199,1200(英文),1286 多次发表<<一个挑战世界难题的数学模型>>,每次都有一些进歩,但也还存在一些明显的打印错误和容易纠错的表述.若某位行家能发现"无法纠错的缺陷",则文章就被否定了,因为不能经得起历史检验的文章就是垃圾.
作者:善良的宋兰 时间:2018-04-17 16:08:52
善良的宋兰介绍吕渊的一篇短文
挑战法国人贺欧夫各特先生
我们是中国预印本.数学序号1200(英文),1286(中文)<<一个挑战世界难题的数学模型>>一文的作者,很高兴在中国互联网百度看到您证明哥德巴赫猜想的情况介绍.我们知道哥德巴赫有两个猜想.每一个大于2的偶数都可以写成两个素数的和(强哥德巴赫猜想),每一个大于5的奇数都可以写成三个素数的和(弱哥德巴赫猜想).据中国互联网报导您彻底破解了每一个大于5的奇数可以写成三个素数的和.证明由两部分组成.(1).小于10的30次方时由计算机完成.(2).其它部分由证明完成.
我们自信地认为我们在中国预印本上的文章可以挑战您的工作.理由如下:(1)文章证明得到了一个比强哥德巴赫猜想更强的结果,由这个结果可以推得强哥德巴赫猜想,并可推得您的结果.(2)可推得孪生素数猜想.(3)我们的证明不需要借助计算机的帮助,数学归纳法(或称超限归纳法)就可以得到所需要的结果.只用人工方法,这种一般性证明看得见,摸得着,有几何意义,可代数验证(即 任何大于6的偶数2a若满足大于Pn的平方,小于Pn+1的平方,则 必存在0<k<4Pn,使2a=(a-k)+(a+k),其中(a-k)和(a+k)是不同的素数,Pn和Pn+1是任意相邻的奇素数).
我们是爱好数学,尊重科学的平凡中国人,但我们不懂法语,希望有懂法语的专家学者或师生能将我们对贺欧夫各特先生的挑战传达给他,我们将以尊重科学的态度及时回答他的任何质疑和评论.同时也欢迎全数学界关注我们的讨论.
更多信息可搜索百度"善良的宋兰".
哥德巴赫猜想为什么难以破解
回顾哥德巴赫猜想的证明历程,可以回答猜想为什么难以破解.
(1). 历史上中外数学家都是在数域和自然数公理系统PA范围内进行的,选择好的数学研究方向是很要紧的.从中国预印本.自然科学.数学序号: 1286文章的证明方佉和所用理论可知,哥猜是整数环及其商环和列向量集合Gn的幂集代数(或称布尔代数)范围内的问题.文章提出的两条对列向量集合Gn进行分类的定义将自然数公理系统PA和集合论公理系统ZFC链接起来构成一个更大更强的统一协调的公理体系,在数学模型Gn-圆内部进行讨论,而历史上所用的方法是在Gn-圆外部讨论,研究方向不同,所得结论不同,这也就不奇怪了.
(2). 详细研究过预印本.数学序号:1286文章的学者可以看出哥猜的解是一个集合(即: 非一个解),所以是否用集合论公理讨论也是一个研究方向问题.方向不对再复杂的数学手段也行不通,将复杂的数学问题简单化才是好的方法.我们将文章投给中国预印本的目的有两个,第一让全数学界质疑评论文章的思路方法是否有效可行,第二是让中国预印本成长为美国预印本arXiv一样的学术讨论平台.
(3). 历史上数学家哥德尔发现了哥猜在自然数公理系统PA内是不可证明也不可证否的,但其他的数学家没有引起重视,走了弯路.亊实上在数学模型Gn-圆上先证明对每一个偶数2a都存在一个满足大于等于1,小于等于4Pn整数k使: 2a=(a-k)+(a+k) 其中(a-k)和(a+k)对应的是素向量(注: 素向量对应的整数不一定是素数,见定义).这是Gn-圆上的一个全称命题.再由推理规则(或称UG规则)推出一个比哥猜更强的结论,这是一个特称命题.然后用数学归纳法证明此结论对每一个大于6的偶数都成立.
(4). 许多证明对哥猜的直覌理解有一定价值,看到了问题所在.但还有人总是抓住初等方法不放,请问"初等方法"的定义是什么?关键是要站在前人的肩膀上,使用已有的成果和数学专业术语.不要过多发明自己的数学术语(万不得已,也得严格定义).这就是很多人看到了,写不出,写出来了,别人也看不懂.比如说,数学爱好者要看懂预印本.数学序号:1286文就必须研究过离散数学和数论的相关内容,要把自己的思路写成一篇好文章不读相关数学书是不可能的.有人一口气推出十几个数学命题,俗话说得好,伤其十指不如断其一指,人生苦短,能在前人的肩膀上跨一小歩,也就足已了.
哥德巴赫猜想为什么难以破解---------两个重要的数学概念"关系和函数"
在互联网栏目"哥德巴赫猜想已经证明到什么程度了"中有人报导过王元先生说:"离散问题用离散方法处理为妥."[2] 的覌点.中国预印本.数学序号:1286文的参考文献[2]的第二篇集合论中的第六章关系和第七章函数介绍了两个重要的概念-------关系和函数.这是文章证明用到的重要数学工具.
文章提出了两个用数学概念"关系"定义的数学术语"列向量分量同余及非分量同余, 哥氏向量的分量同余及非分量同余."这也是两条"非逻辑公理".实质上是给出了对数学模型Gn-圆上的元素进行分类的方法(注:本栏目无法给出复杂的数学符号,要看懂本短文,请参考原文).文章既用到了函数的概念(即:从集合Gn到集合Gn(*)的映射).又用到了关系的概念(即: 哥氏向量集合Gn(*)元素之间的非分量同余关系,转化为列向量集合Gn元素之间的非分量同余关系,注意到这种转化涉及到Gn一个子集的元素与另一个子集的元素之间的对应,一般情况是多个元素与多个元素之间的对应,也存在一个元素与多个元素之间的对应.这种对应是不满足函数定义的,但是满足关系定义的对应可以解释在Gn-圆上对任意的偶数2a,至少存在一个k,使2a=(a-k)+(a+k).并知道(a-k)和(a+k)在什么情况下对应的均为素数(一般情况下有若干对).同时也可解释(a-k)和a+k)在什么情况下分别为:素数+合数; 合数+素数; 合数+合数.在什么情况下是不可判定的).如果有一个适当的学术平台才可以说清楚每一个细节.总结一句话,王元老前辈如果真的说过:"离散问题用离散方法处理为妥",那么对他的学生和相当一批人的研究方向都是有指导意义的.
哥德巴赫猜想为什么难以破解的另一个原因是没有引起世界数学界的广泛讨论.虽然中国人在全数学界的话语权份量不足,但是数学是没有国界的,是属于全人类的.数学的每一个分支都是从"不证自明的"简单公理出发推导出来的,是否正确不是个人感情能决定的.尽管数学界有个潜规则"世界顶尖专家的话,一句顶一万句".那是互联网不发达的历史造成的,近几十年来一流数学问题的破解和最后认可都离不开千千万万数学人士的公开貭疑和评论.组织这种学术讨论本身就是一项综合性的大工程.谁是这项工作的组织者和牵头人?
哥德巴赫猜想为什么难以破解--------ZFC集合论公理体系
什么方法"不可以破解哥德巴赫猜想"这是一个很难回答但又是一个值得讨论的非常有价值的问题.有两种覌点对数学界有很大影响.陶哲轩说:"我们可以把ZFC作为外在的推理体系来分析在皮亚诺箕术中什么是可判定的,什么是不可判定的."另一种说法是杨乐先生说的"如果靠加加减减和微积分去解决,无论花多少时间,也绝对搞不出哥德巴赫猜想." 如果数学界有谁能证明上述说法是"真命题".那么无论中科院有多少麻袋的证明文章,都可以在短时间内作出判定此证明是正确还是错误.因为这种判定方法涉及到对哥猜的研究方向是否正确,也能使别人心服口服.
所谓"ZFC推理体系"就是集合论公理体系,所谓"加加减减和微积分"就是指自然数公理体系(或称皮亚诺算术)和微积分的运算方法.中国预印本.自然科学.数学序号:1286文章"第86页的定理1"就是在数学模型Gn-圆上构造列向量集合Gn和Gn(*), 并在它们的幂集代数中运用了ZFC集合论公理的运算方法推得的.整篇文章都是围绕这个核心命题.全数学界都难以回答的问题<<什么方法"不可以破解哥德巴赫猜想">>是该猜想难以破解的原因之一. 收起