- 桃桃
-
勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等於两条直角边边长平方之和。
据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明!
勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。
勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。
首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。
1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。
左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是
a^2+b^2=c^2。
这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。
2.希腊方法:直接在直角三角形三边上画正方形,如图。
容易看出,
△ABA" ≌△AA"C 。
过C向A""B""引垂线,交AB于C",交A""B""于C""。
△ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。
于是, S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC,
即 a2+b2=c2。
至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。
这就是希腊古代数学家欧几里得在其《几何原本》中的证法。
以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:
⑴ 全等形的面积相等;
⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。
这是完全可以接受的朴素观念,任何人都能理解。
我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:
如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。
赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。
西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。
下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。
如图,
S梯形ABCD= (a+b)2
= (a2+2ab+b2), ①
又S梯形ABCD=S△AED+S△EBC+S△CED
= ab+ ba+ c2
= (2ab+c2)。 ②
比较以上二式,便得
a2+b2=c2。
这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。
1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。
在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。
如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则
△BCD∽△BAC,△CAD∽△BAC。
由△BCD∽△BAC可得BC2=BD ? BA, ①
由△CAD∽△BAC可得AC2=AD ? AB。 ②
我们发现,把①、②两式相加可得
BC2+AC2=AB(AD+BD),
而AD+BD=AB,
因此有 BC2+AC2=AB2,这就是
a2+b2=c2。
这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。
在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:
设△ABC中,∠C=90°,由余弦定理
c2=a2+b2-2abcosC,
因为∠C=90°,所以cosC=0。所以
a2+b2=c2。
这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。
人们对勾股定理感兴趣的原因还在于它可以作推广。
欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。
从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。
勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。
若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。
如此等等。
【附录】
一、【《周髀算经》简介】
《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。
《周髀算经》使用了相当繁复的分数算法和开平方法。
二、【伽菲尔德证明勾股定理的故事】
1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。
于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。
- tt白
-
勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。
- 陶小凡
-
你的练习册上肯定有。
相关推荐
勾股定理的故事
最早发现"勾三股四弦五"这一特殊关系的是古埃及人,这一事实可以追溯到公元前25世纪,中国古代数学家也较早独立发现并证明过勾股定理,而对它的应用更有许多独到之处。勾股定理一般情况的发现和证明,那要归功于古希腊的毕达哥拉斯。这个定理在中国又称为"商高定理",在外国称为"毕达哥拉斯定理"。 美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。 公元前十一世纪,我国周朝数学家商高就提出“勾三、股四、弦五”。勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为“勾股定理”,也有人称“商高定理”。 在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。因而西方人都习惯地称这个定理为“毕达哥拉斯定理”。 勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。2023-01-12 16:05:291
勾股定理的故事
勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证,周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理。2023-01-12 16:05:491
关于勾股定理的小故事?
勾股的发现 在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使伽菲尔德循 声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干 什么? 只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道: “如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。 于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。 1881年,伽菲尔德就任美国第二十任总统。后来, 勾股的证明 人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。 勾股定理同时也是数学中应用最广泛的定理之一。例如从勾股定理出发逐渐发展了开平方、开立方;用勾股定理求圆周率。据称金字塔底座的四个直角就是应用这一关系来确定的.至今在建筑工地上,还在用它来放线,进行“归方”,即放“成直角”的线。 正因为这样,人们对这个定理的备加推崇便不足为奇了。1955年希腊发行了一张邮票,图案是由三个棋盘排列而成。这张邮票是纪念二千五百年前希腊的一个学派和宗教团体 —— 毕达哥拉斯学派,它的成立以及在文化上的贡献。邮票上的图案是对勾股定理的说明。希腊邮票上所示的证明方法,最初记载在欧几里得的《几何原本》里。 尼加拉瓜在1971年发行了一套十枚的纪念邮票,主题是世界上“十个最重要的数学公式”,其中之一便是勾股定理。 2002年的世界数学家大会在中国北京举行,这是21世纪数学家的第一次大聚会,这次大会的会标就选定了验证勾股定理的“弦图”作为中央图案,可以说是充分表现了我国古代数学的成就,也充分弘扬了我国古代的数学文化,另外,我国经过努力终于获得了2002年数学家大会的主办权,这也是国际数学界对我国数学发展的充分肯定。 今天,世界上几乎没有人不知道七巧板和七巧图,它在国外被称为“唐图”(Tangram),意思是中国图(不是唐代发明的图)。七巧板的历史也许应该追溯到我国先秦的古籍《周髀算经》,其中有正方形切割术,并由之证明了勾股定理。而当时是将大正方形切割成四个同样的三角形和一个小正方形,即弦图,还不是七巧板。现在的七巧板是经过一段历史演变过程的。 勾股趣事 甚至还有人提出过这样的建议:在地球上建造一个大型装置,以便向可能会来访的“天外来客”表明地球上存在有智慧的生命,最适当的装置就是一个象征勾股定理的巨大图形,可以设在撒哈拉大沙漠、苏联的西伯利亚或其他广阔的荒原上,因为一切有知识的生物都必定知道这个非凡的定理,所以用它来做标志最容易被外来者所识别!? 有趣的是:除了三元二次方程x2 + y2 =z2(其中x、y、z都是未知数)有正整数解以外,其他的三元n次方程xn + yn =zn(n为已知正整数,且n>2)都不可能有正整数解。这一定理叫做费尔马大定理(费尔马是17世纪法国数学家)。参考资料:http://zhidao.baidu.com/question/13286127.html2023-01-12 16:06:1015
关于勾股定理的故事有哪些?最好在700字左右。谢谢
【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。 于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。2023-01-12 16:07:131
勾股定律的来历,历史及相关资料
来历及历史:1、中国,公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。 在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。2、远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。公元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。1876年4月1日,加菲尔德在《新英格兰教育日志》上发表了他对勾股定理的一个证法。1940年《毕达哥拉斯命题》出版,收集了367种不同的证法。二、相关资料勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达:扩展资料:勾股定理存在的意义:1、勾股定理的证明是论证几何的发端。2、勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理。3、勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解。4、勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理。5、勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。参考资料来源:百度百科-勾股数百度百科-勾股定理2023-01-12 16:07:344
关于勾股定理的故事
中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩"得到的一条直角边‘勾"等于3,另一条直角边‘股"等于4的时候,那么它的斜边‘弦"就必定是5。这个原理是大禹在治水的时候就总结出来的呵。” 从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何的读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。2023-01-12 16:08:352
关于诶菲尔德证明勾股定理的小故事
、【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。 于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。2023-01-12 16:08:562
勾股定理由来
勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等於两条直角边边长平方之和。 据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明! 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a^2+b^2=c^2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法:直接在直角三角形三边上画正方形,如图。 容易看出, △ABA" ≌△AA"C 。 过C向A""B""引垂线,交AB于C",交A""B""于C""。 △ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。 于是, S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。 【附录】 一、【《周髀算经》简介】 《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。 二、【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。 于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。2023-01-12 16:09:171
给个勾股定理的故事
教授R. Smullyan在他的书里 <5000 B.C. and Other Philosophical Fantasies>提到,有一次在他上数学课的时候,他在黑板上画了三个正方形,组成的一个三角形,他对学生们说,假设这三个正方形石3个金矿,你们被允许拿走其中两个小的或者那个大的,你们会选择哪个,结果是一般的人选择了前者,另一半选择了后者,在得知两种选择没有区别后,学生们后来非常吃惊。这就是因为我们今天所熟知的勾股定理。 a + b = c2023-01-12 16:09:382
毕达哥拉斯是怎样发现勾股定理的?
“勾三股四弦五”,是现在我们耳熟能详的“勾股定理”中的一个特例,它早在西汉的数学著作《周髀算经》中就已经出现。遗憾的是,我们的祖先没能从特例中发现这一定理的普遍意义,而拱手将这一定理的发现权及冠名权让给了古希腊著名的数学家和哲学家毕达哥拉斯。他第一个用演绎法证明了直角三角形斜边平方等于两直角边平方之和,因而这条定理在西方以他的名字命名,被称为“毕达哥拉斯定理”。大约在公元前572年,毕达哥拉斯出生于爱琴海中的萨摩斯岛。自幼聪明好学,曾在名师门下学习几何学、自然学和哲学,后来因对东方的向往,游历巴比伦、印度和埃及,吸收了阿拉伯文明和印度文明,大约在公元前530年才返回希腊,创建了自己的学派。此后他一边从事教育,一边从事数学研究。“勾股定理”是毕达哥拉斯一个最具代表的数学成就,关于这一定理的发现还有一个有趣的故事。相传,毕达哥拉斯应邀参加一次豪华宴会,不知道什么原因,大餐迟迟不上桌。善于观察和理解的毕达哥拉斯没有注意到这些,而是被脚下排列规则、美丽的方形石砖所深深吸引。他并不是欣赏它们的美丽,而是思考它们和“数”之间的关系。于是,在大庭广众之下,他蹲在地板上,拿了画笔在选定的一块石砖上以它的对角线为边画一个正方形,结果惊奇地发现这个正方形面积恰好等于两块砖的面积和。开始他以为这只是巧合,但当他把两块石砖拼成的矩形之对角线作另一个正方形时,这个正方形之面积相当于5块石砖的面积。这也就是说它等于以两股为边作正方形面积之和。毕达哥拉斯被这一惊奇的发现惊呆了,他明白这绝不是一种巧合。回到家后,他又作了进一步演算,最终证明了“勾股定理”。据说,他为了庆祝这一伟大的发现,特宰杀了一百头牛,在学院里大摆宴席狂欢。对数的研究,毕达哥拉斯达到了痴迷的程度,且把它神秘化。他认为数是众神之母,是普遍的源头,并把它上升到了美学高度,让人们站在审美的角度来理解“数”,理解“和谐”和“美”。除将“数的和谐”用在美学上外,毕达格拉斯还将这种思想引向了音乐。他发现:竖琴每一条弦的长度如果呈一定的比例,这些琴弦发出的声音就会很清晰。琴弦的长度可以用数字表示(这也就是我们所知的五线谱的最早来历了),所以毕达哥拉斯认为,美丽的音色背后存在着“数字”,因此他为音乐创造出了数学性的规则,故而也被称为“音乐鼻祖”。球形是最完美的几何体,毕达哥拉斯认为大地也应该是球形。在此基础上,他提出了太阳、月亮和行星作均匀圆周运动的观点,这一观点直到17世纪初德国天文学家开普勒的出现才被打破。此外,他还认为10是最完美的数,推断天上发光运动天体也必然是10个。毕达哥拉斯的哲学是和数学分不开的,他把自己在数学上的思想引到了哲学上,总结出一句话就是“万物皆数”,“数是万物的本质”。在对宇宙本源的认识上,他把数理解为是自然界的形式和形象,是一切事物的总根源。有了数,才有几何学上的点,有了点才有线、面和市体,有了立体才有火、气、水、土这四种元素,从而构成了世间万物。这些观点虽然带有很强的主观色彩,但是对后来美学的发展却起着深远的影响。在历史上,关于毕达哥拉斯的传说几乎是一堆难分难解的真理与荒诞的混合,罗素甚至形容他为:“一种爱因斯坦与艾地夫人的混合。”此外,他所建立的有宗教色彩的毕达哥拉斯学派,持续繁荣了两个世纪之久。他的思想主要是通过这一学派得以继承和传播。大约公元前497年,毕达哥拉斯在林敦(今意大利南部塔兰托)去世,但他在科学上所作出的贡献是永远不可磨灭的,他把对数学的理解发展到哲学上的意义,一直影响到今天,特别是“数的和谐”思想至今仍是现在美学的最高追求。2023-01-12 16:10:002
"勾股定理"的发展简史
勾股定理又叫商高定理、毕氏定理,或称毕达哥拉斯定理(Pythagoras Theorem).在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。如果直角三角形两直角边分别为a、b,斜边为c,那么a^2;+b^2;=c^2;,即α*α+b*b=c*c推广:把指数改为n时,等号变为小于号据考证,人类对这条定理的认识,少说也超过 4000 年!中国最早的一部数学著作——《周髀算经》的第一章,就有这条定理的相关内容:周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”就是说,矩形以其对角相折所称的直角三角形,如果勾(短直角边)为3,股(长直角边)为4,那么弦(斜边)必定是5。从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要的数学原理了。在西方有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。除上述两个例子外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。但是,这一传说引起过许多数学史家的怀疑。比如说,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得证实。”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为 30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。这说明,勾股定理实际上早已进入了人类知识的宝库。勾股定理是几何学中的明珠,它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单又实用,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。(※关于勾股定理的详细证明,由于证明过程较为繁杂,不予收录。) 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。 【附录】 一、【《《周髀算经》·》简介】 《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。 二、【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。 于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。如下:解:勾股定理的内容:直角三角形两直角边a、b的平方和等于斜边c的平方,a^2;+b^2;=c^2;说明:我国古代学者把直角三角形的较短直角边称为“勾”,较长直角边为“股”,斜边称为“弦”,所以把这个定理成为“勾股定理”。勾股定理揭示了直角三角形边之间的关系。举例:如直角三角形的两个直角边分别为3、4,则斜边c2= a2+b2=9+16=25则说明斜边为5。2023-01-12 16:11:023
求有关直角三角形的故事或有关勾股定理
勾股定理故事:青朱出入图青朱出入图,是东汉末年数学家刘徽根据“割补术”运用数形关系证明勾股定理的几何证明法,特色鲜明、通俗易懂。刘徽描述此图,“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂。开方除之,即弦也。”其大意为,一个任意直角三角形,以勾宽作红色正方形即朱方,以股长作青色正方形即青方。将朱方、青方两个正方形对齐底边排列,再以盈补虚,分割线内不动,线外则“各从其类”,以合成弦的正方形即弦方,弦方开方即为弦长。2023-01-12 16:11:231
勾股定理怎样证明
最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长玫秸叫蜛BDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:4×(ab/2)+(b-a)2=c2化简后便可得:a2+b2=c2亦即:c=(a2+b2)(1/2)http://www.mmit.stc.sh.cn/telecenter/CnHisScience/ggdl.htm稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。再给出两种1。做直角三角形的高,然后用相似三角形比例做出。2。把直角三角形内接于圆。然后扩张做出一矩形。最后用一下托勒密定理。http://www.glshf.com/kzwy/sxz/lunwenzs/lhx1.htm这里还有多种证明方法。2023-01-12 16:12:059
有关勾股定理
魅力无比的定理证明——勾股定理的证明勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。1.中国方法画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是a2+b2=c2。这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。2.希腊方法直接在直角三角形三边上画正方形,如图。容易看出,△ABA" ≌△AA"" C。过C向A""B""引垂线,交AB于C",交A""B""于C""。△ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。于是,S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC,即 a2+b2=c2。至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。这就是希腊古代数学家欧几里得在其《几何原本》中的证法。以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:⑴ 全等形的面积相等;⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。这是完全可以接受的朴素观念,任何人都能理解。我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。如图,S梯形ABCD= (a+b)2= (a2+2ab+b2), ①又S梯形ABCD=S△AED+S△EBC+S△CED= ab+ ba+ c2= (2ab+c2)。 ②比较以上二式,便得a2+b2=c2。这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则△BCD∽△BAC,△CAD∽△BAC。由△BCD∽△BAC可得BC2=BD • BA, ①由△CAD∽△BAC可得AC2=AD • AB。 ②我们发现,把①、②两式相加可得BC2+AC2=AB(AD+BD),而AD+BD=AB,因此有 BC2+AC2=AB2,这就是a2+b2=c2。这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:设△ABC中,∠C=90°,由余弦定理c2=a2+b2-2abcosC,因为∠C=90°,所以cosC=0。所以a2+b2=c2。这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。人们对勾股定理感兴趣的原因还在于它可以作推广。欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。如此等等。【附录】一、【《周髀算经》简介】《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。《周髀算经》使用了相当繁复的分数算法和开平方法。二、【伽菲尔德证明勾股定理的故事】1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。转引自:http://tw.ntu.edu.cn/education/yanjiu/中“数学的发现”栏目。图无法转贴,请查看原文。2023-01-12 16:12:477
《勾股定理悠悠4000年的故事》pdf下载在线阅读,求百度网盘云资源
《勾股定理》(Eli Maor)电子书网盘下载免费在线阅读资源链接:链接:https://pan.baidu.com/s/14YSlkN2_e6Vzvb4bDcCMRQ 提取码:hewl书名:勾股定理作者:Eli Maor译者:冯速豆瓣评分:8.1出版社:人民邮电出版社出版年份:201005页数:278内容简介:勾股定理是初等几何中最精彩、最著名和最有用的定理,从古巴比伦至今的悠悠4000年的历史长河里,它的身影若隐若现。许多重要的数学、物理理论中都能发现它的踪迹,甚至连邮票、T-恤、诗歌、散文、音乐剧中也能看到它的身影。作者带领我们穿越历史的迷雾,从远古走来。欧几里得几何、代数几何、微积分、黎曼几何、爱因斯坦相对论,一个个我们熟悉的数学发现的背后无不渗透着勾股定理的影响,古典数学和现代数学的历史轨迹竟然一脉相承,从未走远。历史的变迁、科学史上的重要发现,都随着勾股定理的长袖善舞而一一展开。读者将为书中展现的壮丽史实而深深震撼,极大地丰富自己的视野。作者简介:Eli Maor 知名科普作家,以色列理工学院博士,曾在芝加哥洛约拉大学教授数学史课程。著有畅销书《三角之美:边边角角的趣事》、《勾股定理:悠悠4000年的故事》、《无穷之旅:关于无穷大的文化史》等。在各国期刊上发表过大量论文,涉及应用数学、数学史和数学教育等领域。2023-01-12 16:13:291
谁知道勾股定理在西方又被称作什么?有什么故事?
毕达哥拉斯定理。 毕达哥拉斯是古希腊著名的哲学家、数学家、天文学家。约公元前580年生于萨摩斯,约公元前500年卒于他林敦。早年曾游历埃及、巴比伦等地。为了摆脱暴政,他移居意大利半岛南部的克罗托内,并组织了一个政治、宗教、数学合一的秘密团体。后在政治斗争中失败,被杀害。 毕达哥拉斯学派很重视数学,企图用数来解释一切。他们研究数学的目的并不在于实用,而是为了探索自然的奥秘。毕达哥拉斯本人以发现勾股定理著称,其实这个定理早为巴比伦人和中国人所知,不过最早的证明应归功毕达哥拉斯。 毕达哥拉斯还是音乐理论的鼻祖,他阐明了单弦的乐音与弦长的关系。在天文方面,首创地圆说。毕达哥拉斯的思想和学说,对希腊文化有巨大的影响。2023-01-12 16:14:1013
勾股定理是什么??
勾股定理勾股定理目录 勾股定理 最早的勾股定理 《周髀算经》简介 伽菲尔德证明勾股定理的故事 勾股定理部分习题 勾股定理的别名 证明 [编辑本段]勾股定理 勾股定理: 在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定古埃及人利用打结作RT三角形理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。 定理: 如果直角三角形两直角边分别为a,b,斜边为c,那么a^2+b^2=c^2; 即直角三角形两直角边的平方和等于斜边的平方。 如果三角形的三条边a,b,c满足a^2+b^2=c^2 ,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理) 来源: 毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。[编辑本段]最早的勾股定理 从很多泥板记载表明,巴比伦人是世界上最早发现“勾股定理”的,这里只举一例。例如公元前1700年的一块泥板(编号为BM85196)上第九题,大意为“有一根长为5米的木梁(AB)竖直靠在墙上,上端(A)下滑一米至D。问下端(C)离墙根(B)多远?”他们解此题就是用了勾股定理,如图 设AB=CD=l=5米,BC=a,AD=h=1米,则BD=l-h=5-1米=4米 ∴a=√[l-(l-h)]=√[5-(5-1)]=3米,∴三角形BDC正是以3、4、5为边的勾股形。[编辑本段]《周髀算经》简介 青朱出入图 《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。[编辑本段]伽菲尔德证明勾股定理的故事 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。 如下: 解:在网格内,以两个直角边为边长的小正方形面积和,等于以斜边为边长的的正方形面积。 勾股定理的内容:直角三角形两直角边a、b的平方和等于斜边c的平方, a^2;+b^2;=c^2; 说明:我国古代学者把直角三角形的较短直角边称为“勾”,较长直角边为“股”,斜边称为“弦”,所以把这个定理成为“勾股定理”。勾股定理揭示了直角三角形边之间的关系。 举例:如直角三角形的两个直角边分别为3、4,则斜边c^2= a^2+b^2=9+16=25即c=5 则说明斜边为5。[编辑本段]勾股定理部分习题 第一章 勾股定理一、 勾股定理的内容,勾股定理是怎样得到的,从定理的证明过程中你得到了什么启示? 练习: 1、在△ABC中,∠C =90°. (1) 若a =2,b =3则以c为边的正方形面积是多少? (2) 若a =5,c =13.则b是多少? .(3) 若c =61,b =11.则a是多少? (4) 若a∶c =3∶5且c =20则 b 是多少? (5) 若∠A =60°且AC =7cm则AB = _cm,BC = _cm. 2、直角三角形一条直角边与斜边分别为8cm和10cm.则斜边上的高等于 _cm. 3、等腰三角形的周长是20cm,底边上的高是6cm,则底边的长为 _cm. 4、△ABC中,AB=AC,∠BAC=120°,AB=12cm,则BC边上的高AD = _cm. 5、已知:△ABC中,∠ACB=90°,CD⊥AB于D,BC= ,DB=2cm ,则BC=_ cm, AB= _cm, AC= _cm. 6、如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,求该河流的宽度为_______。 7、在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高________米。 8、已知一个Rt△的两边长分别为3和4,则第三边长的平方是( ) A、25 B、14 C、7 D、7或25 9、小丰妈妈买了一部29英寸(74cm)电视机,下列对29英寸的说法中正确的是 A. 小丰认为指的是屏幕的长度; B. 小丰的妈妈认为指的是屏幕的宽度; C. 小丰的爸爸认为指的是屏幕的周长; D. 售货员认为指的是屏幕对角线的长度 二、 你有几种证明一个三角形是直角三角形的方法? 练习: (×经典练习×) 据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连结得一个直角三角形,如果勾是三,股是四,那么弦就等于五,后人概括为“勾三,股四,弦五”。 (1)观察:3、4、5、,5、12、13、,7、24、25,……发现这几组勾股数的勾都是奇数,且从3起就没有间断过。计算0.5(9+1)与0.5(25-1)、0.5(25+1),并根据你发现的规律,分别写出能表示7、24、25这一组数的股与弦的算式。 (2)根据(1)的规律,若用n(n为奇数且n≥3)来表示所有这些勾股数的勾,请你直接用含n的代数式来表示它们的股和弦。 答案: (1) 0.5(9+1)∧2+0.5(25-1)∧2=169=0.5(25+1)∧2 0.5(13+1)∧2+0.5(49-1)∧2=0.5(49+1)∧2 (2) 股:0.5(n^2-1) 弦:0.5(n^2+1) 三角形的三边长为(a+b)2=c2+2ab,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形. 1、在ΔABC中,若AB2 + BC2 = AC2,则∠A + ∠C= °。 2、如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是( ) (A) 直角三角形 (B)锐角三角形 (C)钝角三角形 (D)以上答案都不对 已知三角形的三边长分别是2n+1,2n +2n, 2n +2n+1(n为正整数)则最大角等于_________度. 三角形三个内角度数比为1:2:3,它的最大边为M,那么它的最小边是_____. 斜边上的高为M的等腰直角三角形的面积等于_____. 3、已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四边形ABCD的面积。 美国总统的证明方法图各具特色的证明方法三角学里有一个很重要的定理,我国称它为勾股定理,又叫商高定理。因为《周髀算经》提到,商高说过"勾三股四弦五"的话。下面介绍其中的几种证明。 最初的证明是分割型的。设a、b为直角三角形的直角边,c为斜边。考虑下图两个边长都是a+b的正方形A、B。将A分成六部分,将B分成五部分。由于八个小直角三角形是全等的,故从等量中减去等量,便可推出:斜边上的正方形等于两个直角边上的正方形之和。这里B中的四边形是边长为c的正方形是因为,直角三角形三个内角和等于两个直角。如上证明方法称为相减全等证法。B图就是我国《周髀算经》中的“弦图”。 下图是H.珀里加尔(Perigal)在1873年给出的证明,它是一种相加全等证法。其实这种证明是重新发现的,因为这种划分方法,labitibn Qorra(826~901)已经知道。(如:右图)下面的一种证法,是H•E•杜登尼(Dudeney)在1917年给出的。用的也是一种相加全等的证法。 如右图所示,边长为b的正方形的面积加上边长为a的正方形的面积,等于边长为c的正方形面积。 下图的证明方法,据说是L•达•芬奇(da Vinci, 1452~1519)设计的,用的是相减全等的证明法。 欧几里得(Euclid)在他的《原本》第一卷的命题47中,给出了勾股定理的一个极其巧妙的证明,如次页上图。由于图形很美,有人称其为“修士的头巾”,也有人称其为“新娘的轿椅”,实在是有趣。华罗庚教授曾建议将此图发往宇宙,和“外星人”去交流。其证明的梗概是: (AC)2=2△JAB=2△CAD=ADKL。 同理,(BC)2=KEBL 所以 (AC)2+(BC)2=ADKL+KEBL=(BC)2 印度数学家兼天文学家婆什迦罗(Bhaskara,活跃于1150年前后)对勾股定理给出一种奇妙的证明,也是一种分割型的证明。如下图所示,把斜边上的正方形划分为五部分。其中四部分都是与给定的直角三角形全等的三角形;一部分为两直角边之差为边长的小正方形。很容易把这五部分重新拼凑在一起,得到两个直角边上的正方形之和。事实上, 婆什迦罗还给出了下图的一种证法。画出直角三角形斜边上的高,得两对相似三角形,从而有 c/b=b/m, c/a=a/n, cm=b2 cn=a2 两边相加得 a2+b2=c(m+n)=c2 这个证明,在十七世纪又由英国数学家J.沃利斯(Wallis, 1616~1703)重新发现。 有几位美国总统与数学有着微妙联系。G•华盛顿曾经是一个著名的测量员。T•杰弗逊曾大力促进美国高等数学教育。A.林肯是通过研究欧几里得的《原本》来学习逻辑的。更有创造性的是第十七任总统J.A.加菲尔德(Garfield, 1831~1888),他在学生时代对初等数学就具有强烈的兴趣和高超的才能。在1876年,(当时他是众议院议员,五年后当选为美国总统)给出了勾股定理一个漂亮的证明,曾发表于《新英格兰教育杂志》。证明的思路是,利用梯形和直角三角形面积公式。如次页图所示,是由三个直角三角形拼成的直角梯形。用不同公式,求相同的面积得 即 a2+2ab+b2=2ab+c2 a2+b2=c2 这种证法,在中学生学习几何时往往感兴趣。 关于这个定理,有许多巧妙的证法(据说有近400种),下面向同学们介绍几种,它们都是用拼图的方法来证明的。 证法1 如图26-2,在直角三角形ABC的外侧作正方形ABDE,ACFG,BCHK,它们的面积分别为c2,b2和a2。我们只要证明大正方形面积等于两个小正方形面积之和即可。 过C引CM‖BD,交AB于L,连接BC,CE。因为 AB=AE,AC=AG ∠CAE=∠BAG, 所以 △ACE≌△AGB SAEML=SACFG (1) 同法可证 SBLMD=SBKHC (2) (1)+(2)得 SABDE=SACFG+SBKHC, 即 c2=a2+b2 证法2 如图26-3(赵君卿图),用八个直角三角形ABC拼成一个大的正方形CFGH,它的边长是a+b,在它的内部有一个内接正方形ABED,它的边长为c,由图可知。 SCFGH=SABED+4×SABC, 所以 a2+b2=c2 证法3 如图26-4(梅文鼎图)。 在直角△ABC的斜边AB上向外作正方形ABDE,在直角边AC上又作正方形ACGF。可以证明(从略),延长GF必过E;延长CG到K,使GK=BC=a,连结KD,作DH⊥CF于H,则DHCK是边长为a的正方形。设 五边形ACKDE的面积=S 一方面, S=正方形ABDE面积+2倍△ABC面积 =c2+ab (1) 另一方面, S=正方形ACGF面积+正方形DHGK面积 +2倍△ABC面积 =b2+a2+ab. (2) 由(1),(2)得 c2=a2+b2 证法4 如图26-5(项名达图),在直角三角形ABC的斜边上作正方形ABDE,又以直角三角形ABC的两个直角边CA,CB为基础完成一个边长为b的正方形BFGJ(图26-5)。可以证明(从略),GF的延长线必过D。延长AG到K,使GK=a,又作EH⊥GF于H,则EKGH必为边长等于a的正方形。 设五边形EKJBD的面积为S。一方面 S=SABDE+2SABC=c2+ab (1) 另一方面, S=SBEFG+2•S△ABC+SGHFK =b2+ab+a2 由(1),(2) 得出论证 都是用面积来进行验证:一个大的面积等于几个小面积的和。利用同一个面积的不同表示法来得到等式,从而化简得到勾股定理)图见http://ett.edaedu.com/21010000/vcm/0720ggdl.doc 勾股定理是数学上证明方法最多的定理之一——有四百多种证法!但有记载的第一个证明——毕达哥拉斯的证明方法已经失传。目前所能见到的最早的一种证法,属于古希腊数学家欧几里得。他的证法采用演绎推理的形式,记载在数学巨著《几何原本》里。在中国古代的数学家中,最早对勾股定理进行证明的是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a) 2 。于是便可得如下的式子: 4×(ab/2)+(b-a) 2 =c 2 化简后便可得: a 2 +b 2 =c 2 亦即:c=(a 2 +b 2 ) (1/2) 赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。 以下网址为赵爽的“勾股圆方图”:http://cimg.163.com/catchpic/0/01/01F9D756BE31CE31F761A75CACC1410C.gif 以后的数学家大多继承了这一风格并且有发展, 只是具体图形的分合移补略有不同而已。 例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。 以下网址为刘徽的“青朱出入图”:http://cimg.163.com/catchpic/A/A7/A7070D771214459D67A75E8675AA4DCB.gif 勾股定理应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:“禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。”这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。 勾股定理在我们生活中有很大范围的运用.。 勾股定理的16种验证方法(带图):http:blog.cersp.com/UploadFiles/2007/11-25/1125862269.doc 练习题:一个等腰三角形,三个内角的比为1:1:10,腰长为10cm。则这个三角形的面积为____ 解:由题意得此三角形各角角度为15度 15的150度 设底边上的高为h 底边长为2t 。 易得sin15=sin60cos45-cos60sin45=h/10 解得h=5(√6-√2)/2 又tan15=(tan60-tan45)/(1-tan60tan45)=5(√6-√2)/2t 解得t=5(√6+√2) 故面积s=th=50</CN>[编辑本段]勾股定理的别名 勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。 我国是发现和研究勾股定理最古老的国家。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“勾广三,股修四,经隅五”,其意为,在直角三角形中“勾三,股四,弦五”.因此,勾股定理在我国又称“商高定理”.在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。 在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。 在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理.为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.[编辑本段]证明 这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(Elisha Scott Loomis)的 Pythagorean Proposition一书中总共提到367种证明方式。 有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。 利用相似三角形的证法利用相似三角形证明 有许多勾股定理的证明方式,都是基于相似三角形中两边长的比例。 设ABC为一直角三角形, 直角于角C(看附图). 从点C画上三角形的高,并将此高与AB的交叉点称之为H。此新三角形ACH和原本的三角形ABC相似,因为在两个三角形中都有一个直角(这又是由于“高”的定义),而两个三角形都有A这个共同角,由此可知第三只角都是相等的。同样道理,三角形CBH和三角形ABC也是相似的。这些相似关系衍生出以下的比率关系: 因为BC=a,AC=b,AB=c 所以a/c=HB/a and b/c=AH/b 可以写成a*a=c*HB and b*b=C*AH 综合这两个方程式,我们得到a*a+b*b=c*HB+C*AH=C*(HB+AH)=c*c 换句话说:a*a+b*b=c*c [*]----为乘号 欧几里得的证法在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。 设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。 在正式的证明中,我们需要四个辅助定理如下: 如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理) 三角形面积是任一同底同高之平行四边形面积的一半。 任意一个正方形的面积等于其二边长的乘积。 任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。 证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。 其证明如下: 设△ABC为一直角三角形,其直角为CAB。 其边为BC、AB、和CA,依序绘成四方形CBDE、BAGF和ACIH。 画出过点A之BD、CE的平行线。此线将分别与BC和DE直角相交于K、L。 分别连接CF、AD,形成两个三角形BCF、BDA。 ∠CAB和∠BAG都是直角,因此C、A 和 G 都是线性对应的,同理可证B、A和H。 ∠CBD和∠FBA皆为直角,所以∠ABD等于∠FBC。 因为 AB 和 BD 分别等于 FB 和 BC,所以△ABD 必须相等于△FBC。 因为 A 与 K 和 L是线性对应的,所以四方形 BDLK 必须二倍面积于△ABD。 因为C、A和G有共同线性,所以正方形BAGF必须二倍面积于△FBC。 因此四边形 BDLK 必须有相同的面积 BAGF = AB²。 同理可证,四边形 CKLE 必须有相同的面积 ACIH = AC²。 把这两个结果相加, AB²+ AC² = BD×BK + KL×KC 由于BD=KL,BD×BK + KL×KC = BD(BK + KC) = BD×BC 由于CBDE是个正方形,因此AB² + AC² = C²。 此证明是于欧几里得《几何原本》一书第1.47节所提出的 其余见:http://www.edu-sp.com/static/html/20090310/13821.html2023-01-12 16:15:128
30度60度90度勾股定理是什么?
勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。定理用途:已知直角三角形两边求解第三边,或者已知三角形的三边长度,证明该三角形为直角三角形或用来证明该三角形内两边垂直。利用勾股定理求线段长度这是勾股定理的最基本运用。勾股定理的意义勾股定理是欧氏几何中平面单形——三角形边角关系的重要表现形式,虽然是在直角三角形的情形,但基本不失一般性,因此,欧几里得在《原本》中的第一卷,就以勾股定理为核心展开,一方面奠定欧氏公理体系的架构,另一方面紧紧围绕勾股定理的证明,揭示了面积的自然基础。第一卷共48个命题,以勾股定理(第47个命题)及其逆定理(第48个命题)结束,并在后续第二卷中,自然将勾股定理推广大任意三角形的情形,给出了余弦定理的完整形式。勾股定理是人们认识宇宙中形的规律的自然起点,无论在东西方文明起源过程中,都有着很多动人的故事。中国古代数学著作《九章算术》的第九章即为勾股术。并且整体上呈现出明确的算法和应用性特点,这与欧几里得《原本》第一章的毕达哥拉斯定理(勾股弦定理)及其显现出来的推理和纯理性特点恰好形成煜煜生辉的两极,令人感慨。2023-01-12 16:15:541
勾股定理说课稿
作为一名教师,通常需要用到说课稿来辅助教学,说课稿有助于提高教师理论素养和驾驭教材的能力。快来参考说课稿是怎么写的吧!下面是我整理的勾股定理说课稿,仅供参考,大家一起来看看吧。 勾股定理说课稿1 尊敬的各位评委、老师,大家好! 我说课的题目是华师版八年级上册第十四章第一节第一课时《勾股定理》。 教材分析: 如果说数学思想是解决数学问题的一首经典老歌,那么本节课蕴含的由特殊到一般的思想、数学建模的思想、转化的思想就是歌中最为活跃的音符!本节的内容是在学习了二次根式之后的教学,是在学生已经掌握了直角三角形的有关性质的基础上进行的后继学习,是中学数学几个重要定理之一。它揭示了直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,是解决四边形、圆等知识的灵魂,在实际生活中有着极其广泛的应用。 勾股定理的发现、验证和应用蕴含着丰富的文化价值,在理论上占有重要地位,因此本节在教材中起着承前启后的桥梁作用。 新课标下的数学教学不仅是知识的教学,更应注重能力的培养及情感的教育,因此,根据本节在教学中的地位和作用,结合初二学生不爱表现、好静不好动的特点,我确定本节教学目标如下: 1、探索并利用拼图证明勾股定理。 2、利用勾股定理解决简单的数学问题。 3、感受数学文化,体会解决问题方法的多样性和数形结合的思想。 本着课标的要求,在吃透教材的基础上,我确定本节的教学重点、难点、关键如下: 勾股定理的证明和简单应用是本节的重点,用拼图的方法证明勾股定理是难点,而解决难点的关键是充分利用图形面积的各种表示方法构造恒等式。 为了讲清重点、突破难点、抓住关键,使学生达到预定目标,我对教法和学法分析如下: 教法分析: 新课程标准强调要从学生已有的经验出发,最大限度的激发学生学习积极性,新课程下的数学教师更应是学生学习活动的组织者、引导者、合作者,因此,鉴于教材的重点和初二学生的认知水平,我以学生充分预习为前提,以学生的动手操作、讲解为中心,让学生亲历亲为,体会做数学的过程,激发学生的探索兴趣,使课堂活跃起来,提高课堂效率。运用观察法、归纳法、引导发现法、讨论法等多种教学方法相结合的形式,让学生充分展示预习成果,体验成功的快乐,为终身学习和发展打下坚实的基础。为了增大课堂容量、给学生创设高效的数学课堂,给学生提供足够从事数学活动的时间,以导学案的形式、运用多媒体辅助教学。 学法分析 : 学法是学生再生知识的法宝,为了把学生学习过程当作认知事物的过程来解决,教学中我首先引导学生先动手操作,再合作交流,培养学生良好的学习品质和与人合作的能力;接下来,我让学生独立思考,点拨学生用特殊到一般的思想大胆偿试,水到渠成的突出勾股定理的探索这一重点,然后通过学生展示成果让学生抓住用不同的方式拼出图形,从而用不同的方式表示图形面积建立恒等式这一关健,以自己拼图操作、讲解展示预习成果突破定理证明这一难点,指导学生严谨、合理的书写格式,培养学生的逻辑思维能力和语言表达能力。 为了充分调动学生的学习积极性,创设优化高效的数学课堂,我以导学案的方式循序见进的设计教学流程。 以学生必读课本48—52页,选读课本55、56页的课前预习为前提,共分四个环节来进行教学 1、勾股定理的探究:让学生历经量一量、算一算、想一想的由特殊到一般的数学思想引导好学生课前预习,再以检查预习成果的形式为新知的探究作好铺垫。 2、勾股定理的证明:以学生拼图展示、讲解预习成果的形式完成对定理的证明。 3、勾股定理的应用:以课堂练习、学生个性补充和老师适当的个性化追加的形式实现对定理的灵活应用。 4、学后反思:以学生小结的形式引导学生从知识、情感两方面实现对本节内容的巩固与升华。 说创新点: 为了给学生营造一个和谐、民主、平等而高效的数学课堂,我以新课程标准的基本理念和总体目标为指导思想,面向全体学生,选择适当的起点和方法,充分发挥学生的主体地位与教师主导作用相统一的原则。教学中注重学生的动手操作能力的培养,化繁为简,化抽象为直观。例如我以展示预习成果为主线,以学生动手操作、讲解等直观方式代替老师画图、剪图、讲评费时费力的方式,既让每个学生都能积极的参与进来,培养学生的语言表达能力、逻辑推理能力,又达到了直观高效的效果。 教学中我注重人文环境的创设,使数学课堂充满亲切、民主的气氛,例如整节课我以学生的操作、展示、讲解、个性补充为主,拉近了数学与学生的距离,激发了学生的学习兴趣;为了使不同的学生得到不同的发展,人人学有价值的数学,在教学中我创造性的使用教材,在不改变例题的本意为前提,创设身边暖房工程为情境,体现数学的生活化;以一题多变、中考题改编等形式进行练习题的层层深入,体现数学的变化美。 以学生个性补充的形式促进课堂新的生成,最大限度的培养学生创新思维,使不同的人在数学上有不同的发展。本节课既做到了课程的开放,为充分发挥学生聪明智慧和创造性的思维提供了空间,又创设了具有独特教学风格的作文式数学课堂。而多媒体教学的引入更为学生提供了广阔的思考空间和时间;同时,我注重对学生进行数学文化的薰陶和数学思想的渗透,注重美育、德育与教育的三统一,如小结时由“勾股树”到“智慧树”的希望寄语。 勾股定理说课稿2 一、说教材分析 1.教材的地位和作用 华师大版八年级上直角三角形三边关系是学生在学习数的开方和整式的乘除后的一段内容,它是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个直角三角形三条边之间的数量关系,为后面解直角三角形的作好铺垫,它也是几何中最重要的定理,它将形和数密切联系起来,在数学的发展中起着重要的作用。 因此他的教育教学价值就具体体现在如下三维目标中: 知识与技能: 1、经历勾股定理的探索过程,体会数形结合思想。 2、理解直角三角形三边的关系,会应用勾股定理解决一些简单的实际问题。 过程与方法: 1、经历观察—猜想—归纳—验证等一系列过程,体会数学定理发现的过程,由特殊到一般的解决问题的方法。 2、在观察、猜想、归纳、验证等过程中培养学生的数学语言表达能力和初步的逻辑推理能力。 情感、态度与价值观: 1、通过对勾股定理历史的了解,感受数学文化,激发学习兴趣。 2、在探究活动中,体验解决问题方法的多样性,培养学生的合作意识和然所精神。 3、让学生通过动手实践,增强探究和创新意识,体验研究过程,学习研究方法,逐步养成一种积极的生动的,自助合作探究的学习方式。 由于八年级的学生具有一定分析能力,但活动经验不足,所以 本节课教学重点:勾股定理的探索过程,并掌握和运用它。 教学难点:分割,补全法证面积相等,探索勾股定理。 二、说教法学法分析: 要上好一堂课,就是要把所确定的三维目标有机地溶入到教学过程中去,所以我采用了“引导探究式”的教学方法: 先从学生熟知的生活实例出发,以生活实践为依托,将生活图形数学化,然后由特殊到一般地提出问题,引导学生在自主探究与合作交流中解决问题,同时也真正体现了数学课堂是学生自己的课堂。 学法:我想通过“操作+思考”这样方式,有效地让学生在动手、动脑、自主探究与合作交流中来发现新知,同时让学生感悟到:学习任何知识的最好方法就是自己去探究。 三、说教学程序设计 1、故事引入新课,激起学生学习兴趣。 牛顿,瓦特的故事,让学生科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。毕达哥拉斯的发现引入新课。 2、探索新知 在这里我设计了四个内容: ①探索等腰直角三角形三边的关系 ②边长为3、4、5为边长的直角三角形的三边关系 ③学生画两直角边为2,6的直角三角形,探索三边的关系 ④三边为a、b、c的直角三角形的三边的关系,(证明) ⑤勾股定理历史介绍,让学生体会勾股定理的文化价值。 体现从特殊到一般的发现问题的过程。 3、新知运用: ①举出勾股定理在生活中的运用。(老师讲解勾股定理在生活中的运用) ②在直角三角形中,已知∠B=90°,AB=6,BC=8,求AC. ③要做一个人字梯,要求人字梯的跨度为6米,高为4米,请问怎么做? ④如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草. 4、小结本课: 学完了这节课,你有什么收获? 老师补充:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。数学来源于实践,而又应用于实践。解决一个问题的方法是多样性的,我们要多思考。 勾股定是数学史上的明珠,证明方法有很多种,我们将在下一节课学习它。 反思: 教学设计主要是体现从特殊到一般的知识形成过程,探索问题的设计上有点难,第二个问题应加个3,3为直角边的等腰直角三角形让学生分割或者补全,这样过度,降低3,4为直角边的探索探索;在2,6为直角边时,这个问题可以不用设计进去,就为后面的练习留足时间。探索时间较长,整个课程推行进度较慢,练习较少。 对学生的启发不够,对学生的关注不够,学生对问题的思考不能及时想出来,没有及时很好的引导,启发,应让学生多一些思考的空间,并及时交给思考的方法。学生反应不是太好,能力差,也或许是因为问题设计的较难,没有很好的体现出探究。 预期的目标没有很好的达成,学生虽然掌握了勾股定理,但探索热情没有点燃,思维能力,动手能力,探索精神没有很好的得到发展。 勾股定理说课稿3 一、说教材分析: (一)本节内容在全书和章节的地位 这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。 (二)三维教学目标: 1.【知识与能力目标】 ⒈理解并掌握勾股定理的内容和证明,能灵活运用勾股定理及其计算; ⒉通过观察分析,大胆猜想,并且探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。 2.【过程与方法目标】 在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并且体会数形结合和从特殊到一般的思想方法。 3.【情感态度与价值观】通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。 (三)教学重点、难点: 【教学重点】勾股定理的证明与运用 【教学难点】用面积法等方法证明勾股定理 【难点成因】对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。 【突破措施】: ⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程; ⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境; ⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。 二、说教法与学法分析 【教法分析】数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业”六个方面。 【学法分析】新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并且参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使得学生真正的成为学习的主人。 三、说教学过程设计 (一)创设情景 多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火? 问题的设计有一定的"挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。 (二)动手操作 ⒈课件出示课本P99图19.2.1: 观察图中用阴影画出的三个正方形,你从中能得出什么结论? 学生可能会考虑到各种不同的思考方法,老师要给予肯定,并且要鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。 ⒉紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P100图19.2.2(一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。 ⒊再问:当边长不为整数的直角三角形是否也是存在这一结论呢?投影例题:一个边长分别为1.5,3.6,3.9这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。 (三)归纳验证 【归纳】通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,,使学生学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整一堂课充分发挥学生的主体作用,真正获取知识,解决问题。 【验证】先后的三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也是有利于培养学生严谨、科学的学习态度。 (四)问题解决 ⒈让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的快乐。 ⒉自学课本P101例1,然后完成P102练习。 (五)课堂小结 1.小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。 2.教师用多媒体介绍“勾股定理史话” ①《周髀算径》:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。 ②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创。 目的是对学生进行爱国主义教育,激励学生要奋发向上。 (六)布置作业 课本P104习题19.2中的第1.2.3题。目的一方面是巩固“勾股定理”,另一方面是让学生进一步体会定理与实际生活的联系。 勾股定理说课稿4 一、教材分析 勾股定理就是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它就是直角三角形的一条非常重要的性质,就是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,就是解直角三角形的主要根据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。 据此,制定教学目标如下: 1、理解并掌握勾股定理及其证明。 2、能够灵活地运用勾股定理及其计算。 3、培养学生观察、比较、分析、推理的能力。 4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。 教学重点:勾股定理的证明和应用。 教学难点:勾股定理的证明。 二、教法和学法 教法和学法就是体现在整个教学过程中的,本课的教法和学法体现如下特点: 1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。 2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。 3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。 三、教学程序 本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下: (一)创设情境以古引新 1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾就是3,股就是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。 2、就是不就是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。 3、板书课题,出示学习目标。 (二)初步感知理解教材 教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。 (三)质疑解难讨论归纳 1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。 2、教师引导学生按照要求进行拼图,观察并分析; (1)这两个图形有什么特点? (2)你能写出这两个图形的面积吗? (3)如何运用勾股定理?就是否还有其他形式? 这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。 (四)巩固练习强化提高 1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。 2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。 (五)归纳总结练习反馈 引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。 本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。2023-01-12 16:16:351
《周髀算经》是怎么记载陈子等人勾股定理测量太阳与镐京之间的距离?
据《周髀算经》说,陈子等人的确以勾股定理为工具,求得了太阳与镐京之间的距离。为了达到这个目的,他还用了其他一系列的测量方法。陈子用一只长8尺,直径0.1尺的空心竹筒来观察太阳,让太阳恰好装满竹筒的圆孔,这时候太阳的直径与它到观察者之间距离的比例正好是竹筒直径和长度的比例,即1比80。经过诸如此类的测量和计算,陈子和他的科研小组测得日下60000里,日高80000里,根据勾股定理,求得斜至日整10万里。这个答案现在看来当然是错的。但在当时,陈子对他的方案充分信心。他进一步阐述这个方案:在夏至或者冬至这一天的正午,立一根8尺高的竿来测量日影,根据实测,正南1000里的地方,日影1.5尺,正北1000里的地方,日影1.7尺。这是实测,下面就是推理了。越往北去,日影会越来越长,总有一个地方,日影的长会正好是6尺,这样,测竿高8尺,日影长6尺,日影的端点到测竿的端点,正好是10尺,是一个完美的“勾三股四弦五”的直角三角形。这时候的太阳和地面,正好是这个直角三角形放大若干倍的相似形,而根据刚才实测数据来说,南北移动1000里,日影的长短变化是0.1尺,那由此往南60000里,测得的日影就该是零。也就是说从这个测点到“日下”,太阳的正下方,正好是60000里,于是推得日高80000里,斜至日整10万里。接下来,陈子又讲天有多高地有多大,太阳一天行几度,在他那儿都有答案。陈子根本没有想到这一切都是错的。他要是知道他脚下大得没边的大地,只不过是一个小小的寰球,体积是太阳的一百三十万分之一,就像飘在空中的一粒尘土,真不知道他会是什么表情。书的昀后陈子说:一年有365天4分日之一,有12月19分月之7,一月有29天940分日之499。这个认识,有零有整,而且基本上是对的。现在大家都知道一年有365天,好像不算是什么学问,但在那个时代,陈子的学问不是那么简单的,虽然他不是全对。勾股定理的应用,在我国战国时期另一部古籍《路史后记十二注》中也有记载:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溢的灾害,也是应用勾股定理的结果。勾股定理在几何学中的应用非常广泛,较早的案例有《九章算术》中的一题:有一个正方形的池塘,池塘的边长为1丈,有一棵芦苇生长在池塘的正中央,并且芦苇高出水面部分有1尺,如果把芦苇拉向岸边则恰好碰到岸沿,问水深和芦苇的高度各多少?这是一道很古老的问题,《九章算术》给出的答案是“12尺”、“13尺”。这是用勾股定理算出的结果。汉代的数学家赵君卿,在注《周髀算经》时,附了一个图来证明“商高定理”。这个证明是400多种“商高定理”的证明中昀简单和昀巧妙的。外国人用同样的方法来证明的,昀早是印度数学家巴斯卡拉·阿查雅,那是1150年的时候,可是比赵君卿还晚了1000年。东汉初年,根据西汉和西汉时期以前数学知识积累而编纂的一部数学著作《九章算术》里面,有一章就是讲“商高定理”在生产事业上的应用。直至清代才有华蘅芳、李锐、项名达、梅文鼎等创立了这个定理的几种巧妙的证明。勾股定理是人们认识宇宙中形的规律的起点,在东西方文明起源过程中,有着很多动人的故事。我国古代数学著作《九章算术》的第九章即为勾股术,并且整体上呈现出明确的算法和应用性特点,表明已懂得利用一些特殊的直角三角形来切割方形的石块,从事建筑庙宇、城墙等。这与欧几里得《几何原本》第一章的毕达哥拉斯定理及其显现出来的推理和纯理性特点恰好形成熠熠生辉的对比,令人感慨。发明使用0和负数我国是世界上公认的“0”的故乡。在数学史上,“0”的发明和使用是费了一番周折的。我国发明和使用“0”,对世界科学作出了巨大的贡献。在商业活动和实际的生产生活当中,由于“0”不能正确表示出商人付出的钱数和盈利得来的钱数,因而又出现了负数。从古至今,负数在日常生活中有非常重要的作用。2023-01-12 16:17:371
数学名人的资料和故事??
数学名人的故事【华罗庚】华罗庚,1910年11月12日出生于江苏金坛县,父亲以开杂货铺为生。他幼时爱动脑筋,因思考问题过于专心常被同伴们戏称为“罗呆子”。他进入金坛县立初中后,其数学才能被老师王维克发现,并尽心尽力予以培养。初中毕业后,华罗庚曾入上海中华职业学校就读,因拿不出学费而中途退学,故一生只有初中毕业文凭。 此后,他开始顽强自学,每天达10个小时以上。他用5年时间学完了高中和大学低年级的全部数学课程。1928年,他不幸染上伤寒病,靠新婚妻子的照料得以挽回性命,却落下左腿残疾。20岁时,他以一篇论文轰动数学界,被清华大学请去工作。 从1931年起,华罗庚在清华大学边工作边学习,用一年半时间学完了数学系全部课程。他自学了英、法、德文,在国外杂志上发表了三篇论文后,被破格任用为助教。1936年夏,华罗庚被保送到英国剑桥大学进修,两年中发表了十多篇论文,引起国际数学界赞赏。1938年,华罗庚访英回国,在西南联合大学任教授。在昆明郊外一间牛棚似的小阁楼里,他艰难地写出名著《堆垒素数论》。1946年3月,他应邀访问苏联,回国后不顾反动当局的限制,在昆明为青年作“访苏三月记”的报告。1946年9月,华罗庚应纽约普林斯顿大学邀请去美国讲学,并于1948年被美国伊利诺依大学聘为终身教授。不久,妻子带着三个儿子来到美国与其团聚。 1949年,华罗庚毅然放弃优裕生活携全家返回祖国。1950年3月,他到达北京,随后担任了清华大学数学系主任、中科院数学所所长等职。50年代,他在百花齐放、百家争鸣的学术空气下著述颇丰,还发现和培养了王元、陈景润等数学人才。1956年,他着手筹建中科院计算数学研究所。1958年,他担任中国科技大学副校长兼数学系主任。从1960年起,华罗庚开始在工农业生产中推广统筹法和优选法,足迹遍及27个省市自治区,创造了巨大的物质财富和经济效益。1978年3月,他被任命为中科院副院长并于翌年入党。 晚年的华罗庚不顾年老体衰,仍然奔波在建设第一线。他还多次应邀赴欧美及香港地区讲学,先后被法国南锡大学、美国伊利诺依大学、香港中文大学授予荣誉博士学位,还于1984年以全票当选为美国科学院外籍院士。1985年6月12日,他在日本东京作学术报告时,因心脏病突发不幸逝世,享年74岁。【祖冲之(429~500) 】中国南北朝时代南朝数学家、天文学家、物理学家。范阳遒(今河北涞水)人 祖冲之(429-500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。 宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。 我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。 【几何之父欧几里德】我们现在学习的几何学,是由古希腊数学家欧几里德(公无前330—前275)创立的。他在公元前300年编写的《几何原本》,2000多年来都被看作学习几何的标准课本,所以称欧几里德为几何之父。 欧几里德生于雅典,接受了希腊古典数学及各种科学文化,30岁就成了有名的学者。应当时埃及国王的邀请,他客居亚历山大城,一边教学,一边从事研究。 古希腊的数学研究有着十分悠久的历史,曾经出过一些几何学著作,但都是讨论某一方面的问题,内容不够系统。欧几里德汇集了前人的成果,采用前所未有的独特编写方式,先提出定义、公理、公设,然后由简到繁地证明了一系列定理,讨论了平面图形和立体图形,还讨论了整数、分数、比例等等,终于完成了《几何原本》这部巨著。 《原本》问世后,它的手抄本流传了1800多年。1482年印刷发行以后,重版了大约一千版次,还被译为世界各主要语种。13世纪时曾传入中国,不久就失传了,1607年重新翻译了前六卷,1857年又翻译了后九卷。 欧几里德善于用简单的方法解决复杂的问题。他在人的身影与高正好相等的时刻,测量了金字塔影的长度,解决了当时无人能解的金字塔高度的大难题。他说:“此时塔影的长度就是金字塔的高度。” 欧几里德是位温良敦厚的教育家。欧几里得也是一位治学严谨的学者,他反对在做学问时投机取巧和追求名利,反对投机取巧、急功近利的作风。尽管欧几里德简化了他的几何学,国王(托勒密王)还是不理解,希望找一条学习几何的捷径。欧几里德说:“在几何学里,大家只能走一条路,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。一次,他的一个学生问他,学会几何学有什么好处?他幽默地对仆人说:“给他三个钱币,因为他想从学习中获取实利。” 欧氏还有《已知数》《图形的分割》等著作。【数学家的故事--韦达】韦达(1540-1603),法国数学家。年青时学习法律当过律师,后从事政治活动,当过议会议员,在西班牙的战争中曾为政府破译敌军密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示 已知数、未知数及其乘幂,带来了代数理论研究的重大进步。韦达讨论了方程根的多种有理变换,发现了方程根与分数的关系,韦达在欧洲被尊称为“代数学之父”。1579年,韦达出版《应用于三角形的数学定律》,同时还发现,这是π的第一个分析表达式。 主要著有《分析法入门》、《论方程的识别与修正》、《分析五章》、《应用于三角形的数学定律》等,由于他贡献卓著,成为十六世纪法国最杰出的数学家。【数学家的故事--杨辉】 杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。 他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。 杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。 他在《续古摘奇算法》中介绍了各种形式的"纵横图"及有关的构造方法,同时"垛积术"是杨辉继沈括"隙积术"后,关于高阶等差级数的研究。杨辉在"纂类"中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。 他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的"习算纲目"是中国数学教育史上的重要文献。【数学家的故事--毕达哥拉斯】毕达哥拉斯(约公元前580年-500年),古希腊哲学家、数学家、天文学家。他在意大利南部的克罗托内建立了一个政治、宗教、数学合一的秘密团体--毕达哥拉斯学派,他们很重视数学,企图用数学来解释一切,毕达哥拉斯本人以发现勾股定理(西方称毕达哥拉斯定理)而著名,其实这一定理早已为巴比伦人和中国人所知,但最早的证明可归功于毕达哥拉斯学派。 该学派还发现,若是奇数,则 构成直角三角形的三边,其实我们所称的勾股数。该学派将自然数分为若干类:奇数、偶数、完全数(即等于它的包括1而不包括它本身的所有因数之和的数)亲和数、三角数(1、3、6、10……)、平方数(1、4、9、16……)、五角数(1、5、12、22……)等,又发现从1起连续奇数的和必为平方数。 他们还发现了五种正多面体,在天文学和音乐理论上还有不少贡献,他的思想和学说对希腊文化有巨大影响。毕达哥拉斯(约公元前580年-500年),古希腊哲学家、数学家、天文学家。他在意大利南部的克罗托内建立了一个政治、宗教、数学合一的秘密团体--毕达哥拉斯学派,他们很重视数学,企图用数学来解释一切,毕达哥拉斯本人以发现勾股定理(西方称毕达哥拉斯定理)而著名,其实这一定理早已为巴比伦人和中国人所知,但最早的证明可归功于毕达哥拉斯学派。 该学派还发现,若是奇数,则 构成直角三角形的三边,其实我们所称的勾股数。该学派将自然数分为若干类:奇数、偶数、完全数(即等于它的包括1而不包括它本身的所有因数之和的数)亲和数、三角数(1、3、6、10……)、平方数(1、4、9、16……)、五角数(1、5、12、22……)等,又发现从1起连续奇数的和必为平方数。 他们还发现了五种正多面体,在天文学和音乐理论上还有不少贡献,他的思想和学说对希腊文化有巨大影响。参考资料:数学名人的故事http://www.360doc.com/content/11/0708/11/1993072_132306091.shtml2023-01-12 16:17:582
祖冲之的小传
祖冲之祖籍范阳郡遒县(今河北涞水),为避战乱,祖冲之的祖父祖昌由河北迁至江南。祖昌曾任刘宋的“大匠卿”,掌管土木工程;祖冲之的父亲也在朝中做官,学识渊博,受人敬重。 祖冲之公元429年生于建康(今江苏南京)。祖家历代都对天文历法素有研究,祖冲之从小就有机会接触天文、数学知识。在青年时代祖冲之就博得了博学多才的名声,宋孝武帝听说后,派他到“华林学省”做研究工作。公元461年,他在南徐州(今江苏镇江)刺史府里从事,先后任南徐州从事史、公府参军。公元464年他调至娄县(今江苏昆山东北)任县令。在此期间他编制了《大明历》,计算了圆周率。宋朝末年,祖冲之回到建康任谒者仆射,此后直到宋灭亡一段时间后,他花了较大精力来研究机械制造。公元494年到498年之间,他在南齐朝廷担任长水校尉一职,受四品俸禄。鉴于当时战火连绵,他写有《安边论》一文,建议朝廷开垦荒地,发展农业,安定民生,巩固国防。公元500年祖冲之在他72岁时去世。 祖冲之的儿子祖暅也是中国古代著名数学家。 为纪念这位伟大的古代科学家,人们将月球背面的一座环形山命名为“祖冲之环形山”,将小行星1888命名为“祖冲之小行星”。 祖冲之公元429年生于建康(今江苏南京)。祖家历代都对天文历法素有研究,祖冲之从小就有机会接触天文、数学知识。在青年时代祖冲之就博得了博学多才的名声,宋孝武帝听说后,派他到“华林学省”做研究工作。公元461年,他在南徐州(今江苏镇江)刺史府里从事,先后任南徐州从事史、公府参军。公元464年他调至娄县(今江苏昆山东北)任县令。在此期间他编制了《大明历》,在《大明历》中,他首次引用了岁差,是我国历法史上的一次重大改革。他还采用了391年中设置144个闰月的新闰周,比古代发明的19年7闰的闰周更加精密。 祖冲之推算的回归年和交点月天数都与观测值非常接近。在数学上, 祖冲之推算出圆周率的真值应该介于3.1415926和3.1415927之间,比欧洲要早一千多年。在机械制造上,曾制造了铜铸指南车、利用水力舂米磨面的水推磨、能日行百里,千里船和计时仪器漏壶、欹器等。宋朝末年,祖冲之回到建康任谒者仆射,此后直到宋灭亡一段时间后,他花了较大精力来研究机械制造。公元494年到498年之间,他在南齐朝廷担任长水校尉一职,受四品俸禄。鉴于当时战火连绵,他写有《安边论》一文,建议朝廷开垦荒地,发展农业,安定民生,巩固国防。公元500年祖冲之在他72岁时去世。 祖冲之的主要成就在数学、天文历法和机械技术三个领域。此外祖冲之精通音律,擅长下棋,还写有小说《述异记》。祖冲之著述很多,但大多都已失传。祖冲之是一位少有的博学多才的人物。【生平著作】《隋书·经籍志》录有《长水校尉祖冲之集》五十一卷,但现已遗佚。 散见于各种史籍记载的还有以下著作: 《安边论》,佚。 《述异记》十卷,佚。 《易老庄义释》,佚。 《论语孝经注》,佚。 《缀术》六卷,佚。 《九章算术义注》九卷,佚。 《重差注》一卷,佚。 《大明历》 《上大明历表》 《驳议》 《开立圆术》 祖冲之生平著作很多,内容也是多方面的。在数学方面,所著《缀术》一书,是著名的“算经十书”之一,被唐代国子监列为算学课本,规定学习四年,惜已失传。在天文历法方面,他编制成《大明历》,并为大明历写了“驳议”。在古代典籍的注释方面,祖冲之有《易义》、《老子义》、《庄子义》、《释论语》、《释孝经》等著作,但亦皆失传。文学作品方面他著有《述异记》,在《太平御览》等书中可以看到这部著作的片断。【天文历法方面贡献】 祖冲之在天文历法方面的成就,大都包含在他所编制的《大明历》及为大明历所写的驳议中。 在祖冲之之前,人们使用的历法是天文学家何承天编制的《元嘉历》。祖冲之经过多年的观测和推算,发现《元嘉历》存在很大的差误。于是祖冲之着手制定新的历法,宋孝武帝大明六年(公元462年)他编制成了《大明历》。大明历在祖冲之生前始终没能采用,直到梁武帝天监九年(公元510年)才正式颁布施行。《大明历》的主要成就如下: 区分了回归年和恒星年,首次把岁差引进历法,测得岁差为45年11月差一度(今测约为70.7年差一度)。岁差的引入是中国历法史上的重大进步。 定一个回归年为365.24281481日(今测为365.24219878日),直到南宋宁宗庆元五年(公元1199年)杨忠辅制统天历以前,它一直是最精确的数据。 采用391年置144闰的新闰周,比以往历法采用的19年置7闰的闰周更加精密。 定交点月日数为27.21223日(今测为27.21222日)。交点月日数的精确测得使得准确的日月食预报成为可能,祖冲之曾用大明历推算了从元嘉十三年(公元436年)到大明三年(公元459年),23年间发生的4次月食时间,结果与实际完全符合。 得出木星每84年超辰一次的结论,即定木星公转周期为11.858年(今测为11.862年)。 给出了更精确的五星会合周期,其中水星和木星的会合周期也接近现代的数值。 提出了用圭表测量正午太阳影长以定冬至时刻的方法。 为纪念这位伟大的古代科学家,人们将月球背面的一座环形山命名为祖冲之环形山,将小行星1888命名为祖冲之小行星。【圆周率】求算圆周率的值是数学中一个非常重要也是非常困难的研究课题。中国古代许多数学家都致力于圆周率的计算,而公元5世纪祖冲之所取得的成就可以说是圆周率计算的一个跃进。祖冲之经过刻苦钻研,继承和发展了前辈科学家的优秀成果。他对于圆周率的研究,就是他对于我国乃至世界的一个突出贡献。祖冲之对圆周率数值的精确推算值,用他的名字被命名为“祖冲之圆周率”,简称“祖率”。 什么是圆周率呢?圆有它的圆周和圆心,从圆周任意一点到圆心的距离称为半径,半径加倍就是直径。直径是一条经过圆心的线段,圆周是一条弧线,弧线是直线的多少倍,在数学上叫做圆周率。简单说,圆周率就是圆的周长与它直径之间的比,它是一个常数,用希腊字母“π”来表示,为算式355÷113所得。在天文历法方面和生产实践当中,凡是牵涉到圆的一切问题,都要使用圆周率来推算。 如何正确地推求圆周率的数值,是世界数学史上的一个重要课题。我国古代数学家们对这个问题十分重视,研究也很早。在《周髀算经》和《九章算术》中就提出径一周三的古率,定圆周率为三,即圆周长是直径长的三倍。此后,经过历代数学家的相继探索,推算出的圆周率数值日益精确。西汉末年刘歆在为王莽设计制作圆形铜斛(一种量器)的过程中,发现直径为一、圆周为三的古率过于粗略,经过进一步的推算,求得圆周率的数值为3.1547。东汉著名科学家张衡推算出的圆周率值为3.162。三国时,数学家王蕃推算出的圆周率数值为3.155。魏晋之际的著名数学家刘徽在为《九章算术》作注时创立了新的推算圆周率的方法——割圆术。他设圆的半径为1,把圆周六等分,作圆的内接正六边形,用勾股定理求出这个内接正六边形的周长;然后依次作内接十二边形,二十四边形……,至圆内接一百九十二边形时,得出它的边长和为6.282048,而圆内接正多边形的边数越多,它的边长就越接近圆的实际周长,所以此时圆周率的值为边长除以2,其近似值为3.14;并且说明这个数值比圆周率实际数值要小一些。在割圆术中,刘徽已经认识到了现代数学中的极限概念。他所创立的割圆术,是探求圆周率数值的过程中的重大突破。后人为纪念刘徽的这一功绩,把他求得的圆周率数值称为“徽率”或称“徽术”。 刘徽以后,探求圆周率有成就的学者,先后有南朝时代的何承天,皮延宗等人。何承天求得的圆周率数值为3.1428;皮延宗求出圆周率值为22/7≈3.14。以上的科学家都为圆周率的研究推算做出了很大贡献,可是和祖冲之的圆周率比较起来,就逊色多了。 祖冲之认为自秦汉以至魏晋的数百年中研究圆周率成绩最大的学者是刘徽,但并未达到精确的程度,于是他进一步精益钻研,去探求更精确的数值。它研究和计算的结果,证明圆周率应该在3.1415926和3.1415927之间。他成为世界上第一个把圆周率的准确数值计算到小数点以后七位数字的人。直到一千年后,这个记录才被阿拉伯数学家阿尔·卡西和法国数学家维叶特所打破。祖冲之提出的“密率”,也是直到一千年以后,才由德国 称之为“安托尼兹率”,还有别有用心的人说祖冲之圆周率是在明朝末年西方数学传入中国后伪造的。这是有意的捏造。记载祖冲之对圆周率研究情况的古籍是成书于唐代的史书《隋书》,而现传的《隋书》有元朝大德丙午年(公元1306年)的刊本,其中就有和其他现传版本一样的关于祖冲之圆周率的记载,事在明朝末年前三百余年。而且还有不少明朝之前的数学家在自己的著作中引用过祖冲之的圆周率,这些事实都证明了祖冲之在圆周率研究方面卓越的成就。 那么,祖冲之是如何取得这样重大的科学成就呢?可以肯定,他的成就是建立在前人研究的基础之上的。从当时的数学水平来看,祖冲之很可能是继承了刘徽所创立和首先使用的割圆术,并且加以发展,因此获得了超越前人的重大成就。在前面,我们提到割圆术时已经知道了这样的结论:圆内接正n边形的边数越多,各边长的总和就越接近圆周的实际长度。但因为它是内接的,又不可能把边数增加到无限多,所以边长总和永远小于圆周。 祖冲之按照刘徽的割圆术之法,设了一个直径为一丈的圆,在圆内切割计算。当他切割到圆的内接一百九十二边形时,得到了“徽率”的数值。但他没有满足,继续切割,作了三百八十四边形、七百六十八边形……一直切割到二万四千五百七十六边形,依次求出每个内接正多边形的边长。最后求得直径为一丈的圆,它的圆周长度在三丈一尺四寸一分五厘九毫二秒七忽到三丈一尺四寸一分五厘九毫二秒六忽之间,上面的那些长度单位我们现在已不再通用,但换句话说:如果圆的直径为1,那么圆周小于3.1415927、大大不到千万分之一,它们的提出,大大方便了计算和实际应用。 要作出这样精密的计算,是一项极为细致而艰巨的脑力劳动。我们知道,在祖冲之那个时代,算盘还未出现,人们普遍使用的计算工具叫算筹,它是一根根几寸长的方形或扁形的小棍子,有竹、木、铁、玉等各种材料制成。通过对算筹的不同摆法,来表示各种数目,叫做筹算法。如果计算数字的位数越多,所需要摆放的面积就越大。用算筹来计算不象用笔,笔算可以留在纸上,而筹算每计算完一次就得重新摆动以进行新的计算;只能用笔记下计算结果,而无法得到较为直观的图形与算式。因此只要一有差错,比如算筹被碰偏了或者计算中出现了错误,就只能从头开始。要求得祖冲之圆周率的数值,就需要对九位有效数字的小数进行加、减、乘、除和开方运算等十多个步骤的计算,而每个步骤都要反复进行十几次,开方运算有50次,最后计算出的数字达到小数点后十六、七位。今天,即使用算盘和纸笔来完成这些计算,也不是一件轻而易举的事。让我们想一想,在一千五百多年前的南朝时代,一位中年人在昏暗的油灯下,手中不停地算呀、记呀,还要经常地重新摆放数以万计的算筹,这是一件多么艰辛的事情,而且还需要日复一日地重复这种状态,一个人要是没有极大的毅力,是绝对完不成这项工作的。 这一光辉成就,也充分反映了我国古代数学高度发展的水平。祖冲之,不仅受到中国人民的敬仰,同时也受到世界各国科学界人士的推崇。1960年,苏联科学家们在研究了月球背面的照片以后,用世界上一些最有贡献的科学家的名字,来命名那上面的山谷,其中有一座环形山被命名为“祖冲之环形山”。 祖冲之在圆周率方面的研究,有着积极的现实意义,适应了当时生产实践的需要。他亲自研究过度量衡,并用最新的圆周率成果修正古代的量器容积的计算。 古代有一种量器叫做“釜”,一般的是一尺深,外形呈圆柱状,那这种量器的容积有多大呢?要想求出这个数值,就要用到圆周率。祖冲之利用他的研究,求出了精确的数值。他还重新计算了汉朝刘歆所造的“律嘉量”(另一种量器,与上面提到的 都是类似于现在我们所用的“升”等量器,但它们都是圆柱体。),由于刘歆所用的计算方法和圆周率数值都不够准确,所以他所得到的容积值与实际数值有出入。祖冲之找到他的错误所在,利用“祖率”校正了数值。 以后,人们制造量器时就采用了祖冲之的“祖率”数值。祖冲之在前人的基础上,经过刻苦钻研,反复演算,将圆周率推算至小数点后7位数,并得出了圆周率分数形式的近似值。祖冲之究竟用什么方法得出这一结果,现在无从查考;如果设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16000多边形,这需要花费多少时间和付出多么巨大的劳动啊! 据《隋书·律历志》记载,祖冲之以一忽(一丈的一亿分之一)为单位,求直径为一丈的圆的周长,求得盈数为3.1415927、肭数为3.1415926,圆周率的真值介于盈肭两数之间。《隋书》没有具体说明祖冲之是用什么方法计算出盈肭两数的。一般认为,祖冲之采用的是刘徽的割圆术,但也有别的多种猜测。这两个近似值准确到小数第7位,是当时世界上最先进的成就。直到一千多年以后,15世纪阿拉伯数学家卡西和16世纪法国数学家F.韦达才得到更精确的结果。祖冲之确定了π的两个渐近分数,约率22/7和密率355/113。其中密率355/113(≈3.1415929)西方直到16世纪才由德国人V.奥托发现。它是三个成对奇数113355再折两段组成,优美、规整、易记。为了纪念祖冲之的杰出贡献,有些外国数学史家把圆周率π的密率叫做“祖率”。 祖冲之在数学领域的成就,只是中国古代数学成就的一个方面。实际上,14世纪以前中国一直是世界上数学最为发达的国家之一。比如几何中的勾股定理,在中国早期的数学专著《周髀算经》(大约于公元前2世纪成书)中即有论述;成书于公元1世纪的另一本重要的数学专著《九章算术》,在世界数学史上最早提出负数概念及正负数加减法法则;13世纪时,中国就已经有了十次方程的解法,而直到16世纪,欧洲才提出三次方程的解法。【祖冲之与其儿子的贡献】 祖冲之还与他的儿子祖暅一起,用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:“幂势既同,则积不容异。”意即:位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。在西方被称为“卡瓦列利原理”,但这是在祖冲之以后一千多年才由意大利数学家卡瓦列利(Cavalieri)发现的。为了纪念祖氏父子发现这一原理的重大贡献,数学上也称这一原理为“祖暅原理”。 祖暅原理也就是“等积原理”。它是由我国南北朝杰出的数学家、祖冲之的儿子祖暅首先提出来的。祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等。 祖冲之的儿子祖暅也是中国古代著名数学家。小时习学家传的学业,深入研究的十分精细,也有灵巧的心思。技艺达到神妙的境地,就是古代传说中的鲁班和倕(传说为舜时的巧匠)这样的巧匠也难以超过他。当他思考到深入之处时,雷霆之声也难以入耳。曾经在走路时遇到仆射徐勉,头竟撞到了徐勉身上,徐勉呼叫他才觉察到。他的父亲所改定的何承天的历法当时尚未施行,梁武帝天监初年,暅之又重新加以修订,在这时才开始施行。职位至太舟卿。【祖冲之故事】祖冲之的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。 宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。 我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒。可见它的精确程度了。 公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说: “你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。 尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。 祖冲之在科学发明上是个多面手。他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方。他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。 祖冲之晚年的时候,掌握宋朝禁卫军的萧道成灭了宋朝。【《南史·祖冲之传》 卷七十二 列传第六十二 】 祖冲之字文远,范阳遒人也。曾祖台之,晋侍中。祖昌,宋大匠卿。父朔之,奉朝请。 冲之稽古,有机思,宋孝武使直华林学省,赐宅宇车服。解褐南徐州从事、公府参军。 始元嘉中,用何承天所制历,比古十一家为密。冲之以为尚疏,乃更造新法,上表言之。孝武令朝士善历者难之,不能屈。会帝崩不施行。 历位为娄县令,谒者仆射。初,宋武平关中,得姚兴指南车,有外形而无机杼,每行,使人于内转之。升明中,齐高帝辅政,使冲之追修古法。冲之改造铜机,圆转不穷,而司方如一,马钧以来未之有也。时有北人索驭驎者亦云能造指南车,高帝使与冲之各造,使于乐游苑对共校试,而颇有差僻,乃毁而焚之。晋时杜预有巧思,造欹器,三改不成。永明中,竟陵王子良好古,冲之造欹器献之,与周庙不异。文惠太子在东宫,见冲之历法,启武帝施行。文惠寻薨又寝。 转长水校尉,领本职。冲之造安边论,欲开屯田,广农殖。建武中,明帝欲使冲之巡行四方,兴造大业,可以利百姓者,会连有军事,事竟不行。 冲之解锺律博塞,当时独绝,莫能对者。以诸葛亮有木牛流马,乃造一器,不因风水,施机自运,不劳人力。又造千里船,于新亭江试之,日行百馀里。于乐游苑造水碓磨,武帝亲自临视。又特善算。永元二年卒,年七十二。着易老庄义,释论语、孝经,注九章,造缀述数十篇。【外传】他(祖冲之)还著有《缀术》一书,汇集了祖冲之父子的数学研究成果。这本书内容深奥,以至“学官莫能究其深奥,故废而不理”。《缀术》在唐代被收入《算经十书》,成为唐代国子监算学课本,当时学习《缀术》需要四年的时间,可见《缀术》的艰深。《缀术》曾经传至朝鲜,但到北宋时这部书就已轶失。2023-01-12 16:18:196
数学史怎样融入数学教育
在具体的教学过程中,将数学史融入数学教学有很多种做法,这取决于教师的信念、教学观、课程内容、历史资料等诸多因素,已有的文献也提供了很多的经验,包括使用专机、游戏、历史调查、本地历史考察、历史家庭作业、历史命题、参观、观看影视作品甚至是戏剧表演。John fauvel 于1991年在《数学学习》上编辑了一期教学中如何应用数学史的专刊,其中列举了应用数学史的12 种不同的具体做法。萧文强(1992)对各种做法进行了概括,提出了应用数学史的8种具体方法和途径:·在教学中穿插数学家的故事和言行;·在讲授某个数学概念时,先介绍它的历史发展;·应用数学历史命题讲授数学概念,根据数学史上典型的错误帮助学生克服学习上的困难;·知道学生制作富有数学史趣味的壁报、专题探讨、戏剧、录像等;·应用数学史文献设计课堂教学;·在课堂内容里渗透历史发展的观点;·以数学教学做只因涉及整体课程;·讲授数学史的课。以上对数学史融入数学教学的研究和总结都成为今天我们实际课堂教学中应汲取的宝贵经验;但怎样将这些理论灵活的运用到实际中去呢?下面就从具体的课堂教学案例入手,谈一谈数学史融入数学教学的方法和作用。2 将数学史融入数学教学的具体应用2.1 通过情境创设融入数学史教学是需要情境的, 但是什么样的情境进入课堂,不仅取决于教学内容, 也取决于教师的教育观念, 相同的教学内容也可以创设出不同的问题情境。建构主义的学习理论强调情境创设要尽可能的真实,数学史实是真实的。因此,情境创设可以充分考虑数学知识产生的背景和发展的历史, 用数学史实作为素材创设问题情境, 这不仅有助于数学知识的学习, 也是对学生的一种文化熏陶。教材的内容。 这样的情境取材于数学史料, 又准确地反映了数学的本质, 必将增强学生的学习兴趣。案例1 无理数可以在讲授无理数的概念时, 先介绍它的历史发展。古希腊时代毕达哥拉斯学派的成员希伯索斯在用勾股定理计算边长为1 的正方形的对角线时, 发现对角线的长度是一种从来没见过的“新数”,打破了该学派所信奉的“万物皆整数”的信条, 引起了人们极大的恐慌, 这件事在数学史上被称为第一次数学危机。 因为这一“新数”的发现,希伯索斯被投入海中处死。那么希伯索斯所发现的是一个什么样的数呢?这节课我们就来揭开它神秘的面纱。问题1: 边长为1 的正方形的对角线的长度是多少?学生利用勾股定理很容易算出是。 问题2: 是一个整数吗?问题3: 它是一个分数吗? 它是一个什么样的数呢?这样从情境入手, 步步深入,自然地展开本节课的教学。 案例2 神秘的数组 “神秘的数组”介绍了美国哥伦比亚大学图书馆收藏的一块编号为“普林顿322( Plimpton322) ”的古巴比伦泥板。 教学时可以以泥板上的数字来展开教学内容。 问题1: 泥板上的60、45、75 这组数之间有什么关系? 学生通过计算可得到: 问题2: 以60mm、45mm、75mm 为边长画△ABC, 并观察它的形状. 通过观察可以发现△ABC 是直角三角形, 然后通过从特殊到一般的方法归纳出一般结论。数学教材中的知识往往是经过千锤百炼的, 被教材编写者“标本化”地呈现在学生面前, 失去了生气与活力。通过情境创设可以再现数学惊心动魄的发展历程,探索先人的数学思想, 缅怀先人为科学而献身的精神,还其自然,恢复其生气。2.2 通过知识教学融入数学史数学史不仅可以给出确定的数学知识, 同时还可以给出知识的创造过程。 对这种创造过程的再现, 不仅可以使学生体会到数学家的思维过程, 培养其探索精神, 还可以形成探索与研究的课堂气氛, 使得课堂教学不再是单纯地传授知识。对于勾股定理的证明, 我国古代数学家给出了众多的方法, 而这些方法大都是通过拼图验证的, 简明直观。将其中经典的验证方法编入教材, 融入课堂教学之中, 不仅是可能的, 也是必要的。案例3 验证勾股定理公元3 世纪我国数学家赵爽证明勾股定理的“弦图”如图3。 对这种验证方法的介绍,可以通过数学的再创造, 分析它的探索过程, 使证明思路逐渐显露出来。课堂中再现当年数学家的创造过程, 十分有助于学生理解与掌握所学的容。剪拼: 剪出四个全等的直角三角形, 并拼成如图3 的形状。 验证: 根据面积关系得到展示学生的证明方法, 如图4: 学生称四个直角三角形的面积为“朱实”, 中间小正方形的面积为“中黄实”, 以弦为边的正方形的面积为“弦实”, 则“朱实四+ 中黄实=弦实”, 即。当学生们发现自己的验证方法和古人的证法同出一辙时, 自信和自豪之心将油然而生。学生的验证方法充分运用了直角三角形易于移补的特点, 其相应的几何思想是图形经移、补、凑、合而面积不变, 这种思想不仅反映了我国传统文化中追求直观、实用的倾向, 而且其中展示的“出入相补”原理和数形结合的思想是我国传统文化的精髓, 这对于继承和发扬传统文化起着潜移默化的熏陶作用。 学生对“出入相补”原理的开拓性工作, 在中国古代数学史上具有重大影响。 2002 年在北京举行的数学家大会上将此图作为大会的中央图案就不足为奇了。2.3 通过解答历史名题融入数学史历史名题的提出一般来说都是非常自然的, 它或者直接提供了相应数学内容的真实背景, 或者揭示了实质性的数学思想方法, 这对于学生理解数学内容和方法都是重要的。 通过对历史名题的解答和探究, 可以使枯燥乏味的习题教学变得富有趣味和探索意义, 从而极大地调动学生的积极性, 提高他们的兴趣。 对于学生来说, 历史上的问题是真实的, 因而更为有趣。案例4 “鸡兔同笼”在学习完解方程之后,选取我国古代名著《孙子算经》中的“鸡兔同笼”问题,“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只鸡和兔在同一个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。求笼中各有几只鸡和兔?做为习题。在没有学习方程的知识之前,学生们对于这样一个复杂的应用题大多数都是一头雾水,没有什么解题思路。但是在老师的启发之下,学生们动脑开始运用方程的思想去解决一个历史名题,最后,通过解方程,得出了正确的答案,这对于学生们来说是十分有趣的,既让他们掌握了方程的基本思想,又让他们感觉到学习的新知识是有用的,大大提高了学生学习的积极性,起到了事半功倍的作用。案例5“折竹问题”选取《九章算术》中的“折竹问题”: 今有竹高一丈, 末折抵地, 去根三尺, 问折者高几何?做为《勾股定理的应用》的习题。通过练习,同学们可以在熟练应用勾股定理的同时,体会到勾股定理在实际问题中的应用。古代数学学技术的辉煌成就激发了学生爱数学、学数学的情感。这种情感是一种潜在的驱动力,它对于培养学生的学习兴趣,立志投身数学研究有着重要意义。这些名题历史久远, 解法经典, 影响广泛。 许多历史名题的提出和解决往往与历史名著和大数学家有关, 学生会感到一种智力的挑战, 也会从学习中获得成功的享受, 这对于学生建立良好的情感体验无疑是十分重要的。2.4 通过方法比较融入数学史著名科学家巴甫洛夫指出:方法是最主要和最基本的东西。 一切都在于良好的方法,有了良好的方法,即使是没有多大才干的人也能作出许多成就。 如果方法不好,即便是有天才的人也将一事无成。 数学教学必须要使学生明白,任何方法仅仅是许许多多的方法之中的一个, 其中有许多你可能联想都未曾想过。 那种始终认为自己是最正确的、肯定自己的思维都比别人的要高明,肯定没有其他更好的选择的行为,这些都是自负的表现。 而自负是思维的重大过失,它会扼杀真正的思维。事实上,数学教学中涉及的许多问题,从它的历史到现在,经过数代数学家们的不懈努力,大都产生过不少令人拍案叫绝的各种解法。 如勾股定理,就有面积证法、弦图证法、比例证法等300 余种;求解一元二次方程, 历史上就有几何方法、特殊值代入法、逐次逼近法、试位法、反演法、十字相乘法和公式法等;求不规则图形的面积,历史上也有德漠克利法、穷竭法、割圆法、平衡法、开普勒法和沃利斯法以及现代的微积分方法。 通过搜集比较历史上的各种不同方法之后, 不仅能使学生更好地领会每种方法的内在本质,而且能启发学生,这对培养知识面宽、有能力、有信心、灵活多变的人大有帮助。2.5 通过追踪历史起源融入数学史 数学固然起源于人类对日常生活现象的观察,但它决不简单, 有一定的难度, 需要时间去体验、把玩并体会它的意蕴。 譬如无限的概念,“向人类头脑提出的挑战,激发了人类的想像力,是思想史中任何其他单个问题都无法比拟的。 无限显得既生疏又熟悉,有时超出了我们的领悟能力,有时又自然而易于理解,在征服它的过程中,人也砸碎了将自己束缚在地球上的镣铐。 而为了实现这一征服, 需要调动人的一切能力——人的推理能力,诗一般的想像力以及求知的渴望。 ”①再如代数符号的产生,代数符号早期是没有的,人们使用文字代替,到了古希腊人们才开始用单词表示,中世纪才开始用单个字母表示。 再后来人们才用特殊的字符来表示,每一次的演进,都凝聚了数学先贤们大量的心血和智慧, 都充满了古代数学家们的神思技巧;还有函数概念的发展,从笛卡尔给出最简单的函数概念出发, 经莱布尼兹、贝努利、欧拉、柯西、黎曼、狄利克雷、维布伦等人之手, 一步一步的发展,其间经历了大约六七次扩充,才形成了我们今天看到的函数概念。 追踪历史起源,就是要引导学生去揭示或感受知识发生的前提或原因、知识概括或扩充的经过以及向前发展的方向,引导学生在重演、再现知识发生过程的活动中,内化前人发现知识的方法和能力。 使学生在掌握知识的同时,还能占有镌刻于知识产生中的认识能力,这种认识能力正是构成创新思维能力的核心。2.6 通过揭示思维过程融入数学史将数学研究中的思想和方法的要点原原本本地告诉学生,引导学生沿着科学的艰险道路作一次富有探索精神的、充满为真理而斗争的崇高动机的旅行, 使学生充分领略以前数学大师们的灵感,承受他们的启迪,可以从中学到他们的策略和经验等。 譬如, 讲数学的抽象性时, 就可以原原本本地向学生展示欧拉解决七桥问题时的思考过程,讲类比时,可以向学生全面介绍自然数平方的倒数之和问题的产生背景、当时的情形及欧拉解决该问题时的奇思妙想等; 结合几何知识的学习,可以向学生揭示历史上有关几何第五公设的、令一代又一代数学家忙碌了二千多年的、各种各样的思考过程及最终的解决办法。 让数学史曾闪烁过光芒的火花,重新在学生的心中点燃。前人的成功和失误,都是后人聪明的源泉。 数学史可以将逻辑推理还原为合情推理, 将逻辑演绎追溯到归纳演绎。 通过挖掘历史上数学家解决问题的真谛,学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,开拓学生的视野,使学生更具有洞察力。2.7 综合运用 如果一堂课选用以上适当的途径和方式渗透于教学的每一个环节,这堂课将变得更加丰满,更具有吸引力。案例:等比数列求和公式 1. 情景创设:采用一则故事改编自意大利数学手稿中的一道问题2. 知识教学:用五种方法对等比数列求和公式进行了推倒,其中解法3师古希腊欧几里德的《几何原本》第九卷中给出的方法,它是由等比数列定义出发进行推导的:3. 公式运用:解决了一些数学史料中的问题,比如出现在古埃及希克索斯草纸中的一个问题:一位妇人的家里有7间储藏室,每间储藏室里有7只猫,每只猫捉了7只老鼠,每只老鼠吃了7颗麦穗,每棵麦穗长出7升麦粒,问储藏室,猫,老鼠,等各有多少?本例教学以“创设情境-知识教学-模式应用-巩固练习”四个环节展开,环环相扣,循序渐进,等比数列前n项求和公式作为主线贯彻整个教学过程,可以说它是这堂课的骨架,这节课能丰满起来,是因为引入了丰富,有趣的数学史料,他们是这堂课的肌肉;而这骨,这肉背后所隐含的灵魂却是公式的推导方法,以及公式运用,因此,可以用“公式是骨,史料是肉,方法是魂”来概括这节课的特点。3 总结在数学史融入数学教学的过程中,最常遇见的困难就是如何对材料适当地剪裁,使其与课程主题融合,以达到数学史的利用能自然、协调,不至于过分突兀,这应是我们追求的最佳效果。 要达到这个目的,那就要求教师在教学活动中,必须注意结合教学实际和学生的经验与体验依据一定的目的,对数学史资源进行有效的选择、组合、改造与创造性加工,使学生容易接受、乐于接受, 并能从中得到有益的启迪。 切实发挥以史激情、以史引趣、以史启真、以史明志的功能。 正像法国著名数学家包罗·朗之万所说: “在数学教学中, 加入历史具有百利而无一弊。2023-01-12 16:19:013
2020关于幼儿教育课外必读书籍推荐
读书是非常必要的,因为我们可以通过读书,来借鉴别人的思想和文笔,所以读好书,在潜移默化中,我们的文学素养就会有所提升。下面就是我给大家带来的2020关于幼儿 教育 课外必读书籍推荐,希望大家喜欢! 2020关于幼儿教育课外必读书籍推荐篇一 幼儿教育 必读书目 (优秀篇) 1.比尔皮特绘本系列 2.雅诺什绘本 :《噢,美丽的巴拿马》、《雅诺什最佳作品选(耕林 文化 精选好书)》(全2册) 3.伊夫邦廷的作品:《开往远方的列车》、《记忆的项链》、《小鲁的池塘》、《艾丽丝的树》、《最重要的事》 4.弗吉尼亚李伯顿:《小房子》、《凯迪和一场很大的雪》、《迈克马力甘和他的蒸汽挖土机》、《逃跑的小火车头》 5.米切尔恩德童话系列:《犟龟》、《光屁股大犀牛》、《出走的绒布熊》、《吃噩梦的小精灵》、《苍蝇和大象的 足球 比赛》、《奥菲利亚的影子剧院》 6.桥梁书:《青蛙和蟾蜍好朋友》 7.环游世界做苹果派 8、小林丰的绘本:《世界上最美丽的村子——我的家乡》、《村里来了马戏团》 9.吃书的狐狸 10.最想做的事 11.小魔怪要上学 12.图书馆老鼠 13.图书馆狮子 14.我讨厌书 15.大卫威斯纳的作品:《7号梦工厂》、《疯狂星期二》、《三只小猪》、《1999年6月29日》 16.小皮斯凯的第一次旅行 17.神奇校车系列 18.树真好 19.月下看猫头鹰 20.小种子 21.石头汤 22.小狐狸买手套 23.讨厌黑夜的席奶奶 24.波拉蔻心灵成长系列:《派雷公糕》、《谢谢您,福柯老师》、《芭芭雅嘎奶奶》、《蜜蜂树》、《三重溪水坝冒险记》 25.驴小弟变石头 26.安娜的新大衣 27.海豚绘本花园之小哲学家系列:《老师,我为什么要上学?》、《爷爷,我为什么不能做想做的事?》、《爸爸,你为什么会喜欢我?》、《妈妈,我为什么存在?》 28.嚓嘭 29.青蛙王子历险记 30.达芬奇想飞 31.小象欧利找弟弟 32.小老鼠亚历山大 幼儿教育必读书目(精选篇) 1. 我要大蜥蜴 2. 爷爷的天使 3. 你很快就会长高 4. 小蝙蝠德林 5. 月光男孩 6. 小步走路 7. 敌人派 8. 松鼠先生和月亮 9. 松鼠先生和第一场雪 10. 威廉先生的圣诞树 11. 你很快就会长高 12. 云朵面包 13. 史东和子的“柳树村”系列(目前只引进了其中一本《色拉和魔法店》) 14. 梅瑟迈尔“我的壁橱里有个大噩梦”系列 15. 格林名家好绘本(阿比忘了什么,第一百个客人、一片匹萨一块钱) 16. 韩国数学绘本 17. 安野光雅的数学绘本(6册,中国城市出版社) 18. 聪明豆绘本之:你是我最好的朋友 19. 聪明豆绘本之:愿望树 20. 莎娜的绘本系列:《神奇的蓝水桶》、《莎娜的雪火车》、《莎娜的红毛衣》、《好饿的小白熊 21. 兔子蹦蹦和青蛙跳跳系列 22. 苏斯博士系列 23. 查理和巧克力工厂 24. 法布尔的昆虫记 25. 比安基的作品:森林报、 26. 凯奇的包裹 27. 奥菲莉亚的影子剧院 28. 豆蔻镇的居民和强盗 29. 小松鼠自然科学书系 30. 晴天有时下猪 31. 团圆(中国原创绘本) 32. 安的种子(中国原创绘本) 2020关于幼儿教育课外必读书籍推荐篇二 幼儿数学书籍推荐及理由(优秀篇) 1《 儿童 枕边数学书》 适读年龄:3-8岁 推荐理由: “儿童枕边数学书”系列从 睡前 故事 引入和日常生活有关的数学问题,通过趣味知识故事+数学答题的形式,提倡孩子探索、发现和主动建构数学模型,在对大量真实生活场景的模拟操作和抽象 反思 中培养孩子对数学的敏感和兴趣,进而培育孩子的思维习惯和创新意识。 《儿童枕边数学书:你比猎豹快多少》包含食物、动物、车辆、运动、职业体验五大趣味主题,分为3种难度,精心设置了38×3道数学题,由易到难,循序渐进,在轻松的睡前时光中,启发孩子用数学解决生活中遇到的实际问题,让睡前时光变得更加有益。 《儿童枕边数学书:把63只鸵鸟运回家》包含人体、衣着、游戏、生活习惯、最喜欢的事情五大趣味主题,分为4种难度,精心设置了38×4道数学题,由易到难,循序渐进,在轻松的睡前时光中,启发孩子用数学解决生活中遇到的实际问题,让睡前时光变得更加有益。 2《数学帮帮忙》 适读年龄:5-8岁 推荐理由: “数学帮帮忙”系列全套共25册,分为“数字与运算”、“量与计量”、“图形与几何”、“探索规律”和“统计与概率”共五部分内容,几乎涵盖了小学阶段所有重要的数学知识。 “数学帮帮忙”系列的每一本书都会讲述一个发生在孩子身边的故事,由故事中出现的问题自然地引入一个数学知识,然后通过运用数学知识解决问题。 故事素材全部源自孩子的真实生活,它不仅能引起孩子的共鸣,更会使他们在阅读过程中不知不觉被生动的情节所吸引,一步一步去找到解决问题的 方法 和答案。孩子在主动参与和积极思考的过程中会慢慢发觉,课本上那些既枯燥又抽象的数学知识竟会变得如此容易理解和掌握!更重要的是,孩子还能深深感受到运用数学知识去解决实际生活中的问题所带来的快乐,从而激发他们学习数学的兴趣,让他们逐渐爱上数学。 3《走进奇妙的数学世界》 适读年龄:3-6岁 推荐理由: 世界级绘本大师、国际安徒生奖得主安野光雅不仅擅长画画,知识也非常渊博,在人文、数学、建筑、文学等领域都有颇深的造诣。他擅长创作数学主题的绘本,将艺术与科学融为充满幽默的视觉游戏,构筑出兼具知性与诗意、充满童趣的“安野风格”,展现出敏锐的 想象力 和缜密的逻辑推理能力,将读者带入一个可以自由联想的魔法数学世界。 在这三本以数学为主题的绘本中,安野光雅从生活中司空见惯的现象、事物入手,用生动优美的图画,风趣幽默地呈现数学原理和概念的由来,通过有趣的游戏、手工和故事,让数学变得简单、好玩,引导孩子自己动手、思考、发现,启发孩子对数学的兴趣。 幼儿数学书籍推荐及理由(精选篇) 1《从小爱数学》 适读年龄:4-10岁 推荐理由: “从小爱数学”绘本曾经荣获第5届韩国出版文化大奖。是韩国儿童数学启蒙的必备用书,同时还是韩国许多小学的数学教材的辅助读物。它与目前出版的数学启蒙书相比,是较全面、系统的、数学知识点涵盖面广的一套书,而且有科学的排序,让家长有径可循。 但是该丛书在讲述数学知识的过程中又很生动活泼,故事十分有趣,让孩子们轻轻松松爱上数学! 2《你好!数学》 适读年龄:3-6岁 推荐理由: 《你好!数学》把数学基础概念分为五个领域(图形和空间、分类和顺序、数和数数儿、量和比较、规律性)和三个能力阶段(3至5岁低、中、高阶段),图书用天马行空的 童话故事 和多元唯美的图画为孩子们呈现一个又一个神奇的数学童话世界,帮助孩子充满乐趣地掌握最基础的数学概念,培养孩子对数学的兴趣和数学思维能力,是孩子们了解数学的第一套启蒙教育图画书。 3《迪士尼学而乐·数学 基础级》 适读年龄:3-6岁 推荐理由: “迪士尼学而乐·数学”基础级共4册,由迪士尼全球顶级学前教育专家研发,根据孩子特点和实际生活精心设计,在游戏和练习中为孩子打下坚实的数学基础。 4册书涵盖了数字和数数、形状和规律以及初级数学技能等多方面知识,难度上循序渐进,反复巩固,直到孩子完全掌握。每本书都有孩子熟悉的迪士尼卡通人物,以引人入胜的故事连贯知识点,并巧妙设置对孩子的激励机制,让孩子对数学游戏和练习爱不释手,从而夯实孩子的数学基础,掌握最基本的数学能力,激发数学兴趣。 4《我是数学迷第一辑》 适读年龄:3-10岁 推荐理由: 这是一次数学王国的大冒险,这是一次想象力和数学思维的奇妙碰撞,这是一道为爱数学的孩子准备的故事大餐,这是一套屡获大奖的数学图画书! 和爱丽丝一起梦游意面国,搞定各种计算;和杰克一起爬上魔豆的顶端,巧妙使用比例和测量;和毕达哥拉斯一起灯塔之谜,发现勾股定理……这些想象力丰富的冒险故事里蕴含着扎根生活的数学原理。阅读这些故事,会发现数学居然这么可爱。 5《玩转数学》 适读年龄:3-6岁 推荐理由: 这套数学游戏书,让学前儿童更有兴趣地进行数学学习,促进思维发展,培养孩子解决实际问题的能力。《玩转数学》共分为2、3、4、5、6岁五个年龄段,每个年龄段5本书,分为5阶,循序渐进,让孩子从婴班玩到学前班。 内容涉及分类、比较、排序、对应、量的学习、数概念、时间、空间、守恒、测量等数学概念。通过这些,发展孩子的观察能力、分析能力、 总结 归纳能力和发散性思维等综合思维能力,让孩子学会用数学的方式解决实际问题。2023-01-12 16:19:221
数学史料如何进入数学教学
数学,是最能体现人类智慧的一门学科,也是人类文明赖以生存的学科,作为人类思维的表达形式,它反映了人民积极进取的意志、缜密周详的逻辑推理以及对完美境界的追求。中学数学是素质教育的重要组成部分,对培养学生分析解题能力、逻辑推理能力、空间想象能力等都非常重要。而数学史教育对中学数学教育的巨大影响力在近年来愈加为人所获知,越来越多的国家开始重视数学史的教学,我国也不例外,数学史教学已成为数学教学中不可或缺的一部分了,由中华人民共和国教育部门定制的《普通高中数学课程标准》于2003年正式出版,该条例明确地提出学生要“感受在人类历史文明进程中数学的力量,体会数学家们在探究新知的过程中严谨的科学态度和大无畏的探索精神,激发学生对学习数学的兴趣,提高学生对数学的理解感悟能力。” 中学数学老师所要必备的教学素质有很多,其中教师对数学史的扎实掌握是非常重要的一项。教师只有掌握一定的数学史知识,才能改进自身的教学不足,提高自身的数学素养,才能真正的把握到数学发展的脉络,向学生传授真正完整的知识。 2、数学史的内涵 要全面的了解一样事物,我们就要了解清楚事情的来龙去脉,要学会数学,我们就要追问数学的发展历程。 “研究这门学科的历史与现状我是们预测数学未来的适当途径。”引用法国著名数学家亨利·庞加莱的原话,也就是说如果我们只是一味的强调知识的掌握却不去了解清楚这些知识的发展历史,那么对这些学生来说,他们所学到的只是些数学的片段知识,并不能真正地认清数学这一学科,而数学史却可以给我们展示知识的总体面貌,让我们更好地地认清数学的过去、现在与未来。 作为一门研究该学科的产生发展及其规律的科学,数学史不仅仅是史料知识这么简单,它还可以追溯到数学的内涵、思维逻辑方式的衍化、发展历程,此外,它还研究数学发展对人类五千多年的文明所带来的影响以及其在人类历史上举足轻重的地位。有人单纯地认为数学史研究就是仅仅为了弄清楚有哪些知识在哪一年由哪个数学家提出的,人类目前为止知道了哪些知识、不知道那些知识,毋容置疑,这是数学史要研究的工作之一,也是最为基础的工作。但是,学习数学史更重要的目的是为了在教学工作中,让师生站在现代数学的成果上,从源头处清理该学科的发展方向和发展规律、并认清它的逻辑思维方式,从本质上更好地理解数学,学会数学。 3、数学史在中学数学教学中的作用 在新课标下改革的大潮下,中学数学课本相应地也增加了不少数学史方面的知识。那么,数学史在中学数学教学中究竟起着怎样的作用呢?作为一个即将踏出学校从事数学教学事业的准老师,我觉得具体有以下几点作用: 3.1数学史能激发学生对学习数学的兴趣 新课标强调教师在教学过程中不仅要重视过程与方法,还要重视学生的情感与态度,只有这样,学生才会对学习产生浓厚的兴趣。在很多学生看来,数学是一门枯燥无味的学科,它既不像语文那样语言优美,又不像英语那样在生活中实用性强,让很多人提不起兴趣来学习。但数学在人类文明上又是不可或缺的,它是一门逻辑性、抽象性很强的学科,如果纯粹的去讲数学知识不去重视培养数学兴趣,那么学生就只是被动的学习,学习主动性就会受到抑制,而数学史在激发学生 学习数学的兴趣就有很大的帮助了,把数学史渗透到数学课堂教学中来能让数学教学活跃起来,不仅有利于学习效果的深化,还可以激发和提高学生数学学习的兴趣。 在课堂一开始,根据教学内容讲叙相应数学家的故事,这样可以引起学生浓厚的兴趣,把心思从课间活动中转移到数学教学当中,这是创造最佳课堂情境,为课堂教学作铺垫的一种好的方法,不仅如此,在教师讲述数学典故的时候,学生的视野还得以开阔,这让他们知道原来这些看似乏味的知识背后却有一个如此一番故事,那么他们对所学的知识提起兴趣了。如在讲数列的前n项和时,在课堂开始开始的时候给学生讲高斯小学被罚算前一百位正整数和的故事,这样学生的心思很快就吸引到课堂来了。除此以外,教师在课堂中引入历史名题也起到引起学生兴趣的作用,许多历史名题的提出都与数学家的有关,学生在思考问题的时候就会不经意的想到这个问题许多大数学家思考过,就会感到一种挑战,自己现在思考的题目许多伟大的数学家也思考过,不知他们所遇到的困惑是否跟我的一样呢,即使想不出来学生也会对题目产生深厚的兴趣。 3.2数学史能加深学生对数学知识的理解 中学生的数学教材由于受一定的局限因素的限制,传授的知识虽然有一定的系统性,但学生对知识的来龙去脉还是不能有个清晰细致的理解,我们就可以利用数学史上人类认知的过程规律,对知识主干进行垂直梳理,使学生头脑中的知识脉络更加清晰,有利于学生对知识的深刻理解和记忆。数学史可以让学生更容易去接受新学的知识,在学生第一次接触代数,第一次面对用字母代替具体的数、时,他们常常会感到迷惑,不知为何要如此,这时教师若想改变这种状况,就可以在课堂上向学生讲述相关数学史料,帮助学生梳理、理解所学的的数学知识。数学的发展历史很长,而现今学生学习到的数学知识是间接学习所得,以前数学家所经历的困难正是学生现在经历的障碍,正因为这些知识产生的过程与学生间接学习的过程十分相似,数学史的讲授就可以帮助学生更好的理解数学知识。总的来说,数学知识是一环紧扣一环的,通过数学史对头脑中所学习的知识的梳理,学生可以更好地在脑海中建立各知识点间、各学科间以及学习与生活间的联系,为更为深刻地理解数学做好铺垫。 在数学历史上无理数的出现曾引发了第一次数学危机,在很长一段时间内人们在心理上都不愿意接受这一事实,学生在学习这个曾经引起动荡的无理数时并不容易,山西某中学曾做过调查,对于无理数相关知识,70%学生只是会做题目,对无理数的概念并没有深刻的理解,这势必对后面的学习造成一定的影响。查阅相关数学史料,我们就发现:在数学史上人们对无理数的发现和理解的过程是想到漫长的,在这个过程当中也犯了不少错误,这样我们就很好的了解学生在学习这一概念时遇到困难是不出奇的,这只是历史的“再现”。所以,在课堂上教师可对学生多讲一些无理数的发展史,这有利于帮助学生理解并接受这一知识。 3.3数学史有助于学生掌握数学思维方法 数学是一门特别的学科,它的特别在于数学有极其严密的思维逻辑形式。我们之所以要学习数学,就是希望通过在数学学习的过程中去锻炼我们的大脑,让我们形成精确缜密的逻辑思维方式和锻炼提高我们的创造能力。实施证明,数学史为这一教育目的的实现起到了不可磨灭的作用。现在中学数学教 材向学生呈现的更多的是系统性的、“天衣无缝”的知识,语言十分的简练,基本都是按定义、定理、证明、推理、例题练习等固定形式去编排,学生在学习过程中跟多的是单纯的去接受这些知识,而缺乏一种真正的数学思维过程,由于学生认知水平的局限,这样他们很容易产生不正确的观点想法,虽然能简速便捷地接受到大批的知识,却让学生轻易认为数学知识学习的过程就固定的是“定义——得出性质定理——做题”,事实是系统化了,却无法让学生清楚了解到知识是经过发现问题、提出假设、论证假设、得出结论并完善,逐步的、经过漫长过程成熟起来的,这不利于学生正确数学思维方法的形成。但是,数学史却可以做到这一点。数学史向学生呈现的不仅仅是明确的数学知识,而更多的是传授相应知识的创造过程,这就让学生对数学知识的产生有一个较为清晰的认识了。通过数学史我们可以认识到数学的本原与特质,从这一个层面上看,在数学史的引领之下,师生间可以创造出一种双向的、探索与研究的课堂气氛。 这样的例子有很多,例如,我们可以再讲数形结合思想时,可以先向学生说在几何学中有很多长期不能解决的问题,例如立方倍级、三等分任意角、化圆为方等问题,直到十七世纪后半叶,法国数学家笛卡儿以坐标为桥梁、在点与数之间、曲线与方程之间建立起对应的关系,用代数方法研究几何问题,从而创立了解释几何学,至今也得到广泛的应用。又如,牛顿和莱布尼兹在在古代数学家研究积分学的思想成果上,为解决许多科学的问题创办了微积分学。 3.4数学史有能培养学生不畏艰险勇往直前的探索精神 一般来说,学生学习的数学课本呈现给学生的都是系统的、现成的知识,并未能体现到数学家们前赴后继、劈荆斩刺地获得数学知识的艰辛,数学家所经历的艰辛而漫长的道路对学生来说似乎只是种形式。但数学这一学科之所以有今天的繁荣昌盛,全赖一代又一代的数学家不畏艰险勇往直前的去摸索、去奋战。通过学习数学史,学生可以明白到这一个道理,知道这些数学家是经过怎样的艰辛奋斗、怎样的排除万难、去把知识一点一滴的积累下来给后来者一个更完善的知识环境,他们就会发现目前学习数学所经历的困难是微不足道的,这样也就不会被学习过程中所遇到的挫折所打倒。此外,通过数学史学生也会发现从古到今不少著名数学家也犯过如今看来非常可笑的错误,数学家跟他们一样也会犯错,那么他们就能正确看待在学习数学过程中所犯过的错误,从而树立起学习数学的自信心。 以计算圆周率∏为例子,古今中外,许多的人都致力于∏的研究与计算。为了计算出圆周率的越来越好的近似值,无数的数学家为这个神秘的数贡献了一生的时间与心血。十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算∏的世界纪录频频创新。德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,用古典的方法计算到圆的内接正262边形,在1609年得到了∏的35位精度值,以至于∏在德国被称为Ludolph数;英国的威廉·山克斯,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位,并将其刻在了墓碑上作为一生的荣誉。可惜,后人发现,他从第528位开始就算错了。虽然后来又有了计算机,但人们对圆周率还是兴趣盎然,因为数学家们认为对∏的研究可以说明人类的认识是无穷无尽的。在教学圆周率的时候,向学生讲述适当的史料知识,这对培养学生不畏艰险勇往直前的探索精神是有积极意义的。历代数学家在困难面前劈荆斩刺、为数学的通天塔添砖加瓦,他们崇高的理想、坚定的信念、顽强的斗志、勇往直前的探索精神是教育学生最好的模范。 4如何在中学数学教学中渗透数学史 乔治.屈维廉说过:“历史并没有真正的科学价值,它的真正目的乃是教育别人。”作为一个准数学老师,我们不只是应该是去学会数学史,更应该是学会运用数学史。教师如果在数学课堂中,结合所教授的内容,有目的、有计划地融入数学史,不仅可以教学内容更加的丰富饱满,还可以对学生起到潜移默化的作用,使学生医生受益。那如何在中学数学教学中渗透数学史呢,下面给大家介绍几种常见的方法: 4.1巧妙利用数学史名题教学 数学史发展的历史长河中,数学历史名题对数学知识的补充、发展都起过重大的作用,如《孙子算经》里面的“鸡兔同笼”问题、古希腊的三大几何难题、哥德巴赫猜想等等,这些历史名题的提出一般都具有一定的现实背景并对实质性的数学方法有所揭示,这对学生理解数学内容和思想方法有极其巨大的帮助。 浅谈数学史在中学数学教学的作用通过教师对具有开放性的历史名题的展示,一方面可以让学生理解到,数学这个领域是运动着的、是活跃的、未完成的,它不是一个静止的、封闭的系统。另一方面,学生还能够认识到数学正是在猜想、错误、中发展进行的,数学进步是对传统观念的革新,从而激发学生的思维,使他们感受到,抓住适当的、有价值的数学问题将是多么激动人心的事情。 例如,初等几何著名定理勾股定理的证明,这个定理以它的简洁性和应用的广泛性,吸引了很多人。由于年代久远,已经很难知道谁是第一个证明勾股定理的人了,但它的证明方法各式各样,高达三百多种,其中有赵爽证明法、美国总统加菲尔证明法、欧几里得证明方法、利用相似三角形证明方法等等。向学生讲述勾股地理证明的历史,可以使单调无趣的证明过程变得趣味盎然而又富有人性化,跟重要的是让学生觉得他们是在自己探索知识,从而让学生更加积极地参与其中,历史上这么多名人去证明勾股地理,现在自己也跟那些名人一样在研究同样的问题,这个问题就变得不一样了。即使历史上已有人用同样的方法做出过证明,但当学生独自去解决掉勾股定理的证明时,他心里面所产生的成就感和自豪感是其他成功的获得所不能比拟的,而这种成就感也会使学生从此对数学产生浓厚的兴趣。 4.2利用数学史进行新课引入 俗话说:“千里之行,始于足下”。好的开始是成功的一半,教师可以运用数学史来进行新课的导入,引发学生的注意力,把学生的思路从上一节课的知识中引导这一节课中,达到上课的最佳心理状态,从而提高学习的效率。在数学课堂的开端教师向学生适当地讲授一些数学知识产生的故事、传说不仅可以引起学生对知识点的直接兴趣,还可以让学生见识到知识的产生发展过程。当然,要做到这一点老师就要经过精心的设计,力求做到引人入胜,统摄全局,引起共鸣。 举个例子,在讲等比数列时,教师可以先向学生讲述古印度国王国王用麦子奖赏智者的故事:传说古代印度有个国王非常喜欢国际象棋,一天,一个智者与国王下棋并赢了国王,国王说可以满足他的一个要求,智者提出的要求就是要国王在棋盘的第1个格子里放上1颗麦粒,第2个格子放上2颗麦粒,第三个格子放4粒麦粒,如此类推,后一个格子里放的麦粒数都是前一个格子里放的麦粒的2倍(国际象棋棋盘有64个格子),希望国王把这些麦子赏赐给他.国王想这还不容易,就欣然同意了他的要求。经过计算,发明者要求的麦粒总数就是2的64次方减1,这个数字非常大。用这个故事引入等比数列新课,相信学生的注意力都会被吸引过来,而且还能培养学生学习数学的兴趣,机器学生对新知识的探究欲望,让学生情绪高涨,从而产生良好的课堂气氛。 4.3利用数学史设置课堂结束环节 一节课上得好不好,课堂的结束环节很重要。课堂结束这一环节主要是实现本节课的教学升华,辅助学生对知识点进行归纳整理、挖掘提炼,让他们理清教学过程的整体思路脉络,掌握知识的深处内涵。除此以外好的课堂结束环节还可以起到承上启下的作用,让学生对下节课的内容产生兴趣,为下一节课的顺利进行做铺垫。如果这个时候教师能好好利用数学史知识来结束本节课的内容,这样就不仅可以吸引学生的兴趣,还可以启发学生的想象力,探究数学知识的奥秘。不仅如此,由于每个学生学习的水平和需要都不尽相同,用数学史来作为课堂的结束环节,可以让不同基础的学生得到不同程度的发展,使扎实掌握好基础的学生继续深入探究,也给相对落后的学生启发。 譬如这样,陈景润的老师在“整数的性质”这堂课结束的时候跟学生说:“在自然科学当中数学处于皇后的地位,皇后头上的皇冠就是数论。而哥德巴赫猜想,则是这顶皇冠上最璀璨夺目的明珠,为了这了明珠许多数学家倾尽了毕生心血,不知将来在座各位谁能把这颗明珠摘下来呢?”就是这位老师在课堂结束的时候用了数学史的知识做结束环节,记起来学生的探究的种子,后来就有了这个世界上攻克“哥德巴赫猜想”的第一个人。 4.4利用数学史讲授知识系列 每一系列的数学知识都是经过漫长的历史演变逐渐发展形成的,其中每个环节的知识的获得都是以一代代人无数的精力和挫折为代价的,数学教学应做到历史与逻辑的统一,寻找恰当的时机让学生像当年的数学家一样经历和体验数学创造的必要性和创造的基本方法。在数学教学过程中,教师可以把学生学习过的知识当成一个环节,各个环节用历史发生的时间和事件串连成一个知识体系,向学生系统地论述各环节知识产生的过程和发展,在教学进度的允许下,教师可以开展适当的专题性学习,适当向学生介绍一些数学史知识,如知识的背景、知识的影响力和现实生活中的实际应用等等,把学生头脑中的数学知识进行梳理,让这些知识形成一个相对清晰完整的系统,这样会起到1+1﹥2的效果了。 以数的发展历史为例子,在生产活动中,人们为了计量物品的个数,产生出自然数这一概念,在对物品的分割中产生了分数,为了表示有相反意义的量时引入了正负数,在对连续的量进行度量时,又引入了无理数,从负数不能开方出发引入了虚数,并把实数扩展到复数。于是就形成了数的理论发展概况:自然数——整数——有理数——无理数——实数——复数,让学生一目了然,对培养学生知识是变化发展的观点十分有利。 4.5利用数学史开展探究式学习 数学知识的活动都是经过观察、实验、交流、分析、综合、推理、总结得出来的,但我们的教科书上鲜少反映这一漫长而复杂的过程,教师可以以数学史为载体,对某一概念形成的几个关键特征进行分析,在学习该概念时,思考学习者可能会感到一定的困难,他们只理解到概念的表面意思,对概念的深层意思却并不理解,但如果配合学生认知规律去给学生讲解数学概念的发展历程,并对这一数学概念进行拆开理解,再进行知识的序列化重构,然后在这样的基础上实施教学,让学习者在教师的引领作用下,重现数学家们在概念形成所经历的几个关键的探究活动过程,同时教师进行适当指导,让学生经历思维的原过程,不仅能丰富学生学习内容还能增加学生对数学史的兴趣,在探索交流的氛围中获得知识,通过喜欢数学史进而喜欢数学。 在探究性学习中,数学史还有一个非常普遍的作用,就是创建探究性学习的情景,而创设的请进要考虑到各方面的因素,创设的情景要有吸引性、真实性、切合学生的生活实际,又要考虑到知识产生发展的规律性和顺序性。那么运用数学史来进行探究性活动情景的创设就再适合不过了,这样既有利于探究性学习的开展又起到对学生的文化熏陶作用。例如,教师在教授“等可能性事件”知识的时候,可以向学生讲述当年今日在数学界所发生的事情,这一系列的数学事件都发生在这一天,这仅仅是一种巧合还是一种正常现象呢? 5小结 综上所述,数学史不仅是在学生对学习数学兴趣的激发,数学知识的理解和数学思维方法的掌握有所帮助以外,它对培养学生不畏艰险勇往直前的探索精神的过程中所起的作用不应忽视,在数学教学中利用数学史资源促进教育教学更是有必要的,如果运用的好,它可以使数学课更加的生动而富有感染力。理论应该是为实践而服务的,我们可以通过各种方法去渗透数学史,其中包括:巧妙利用数学史名题教学、利用数学史进行新课引入、利用数学史设置课堂结束环节、利用数学史讲授知识系列、利用数学史开展探究式学习,以上是我个人心得体会,由于水平有限,如有不足之处,请多多包涵。2023-01-12 16:19:431
中国是四大文明古国之一,是世界公认的吗?
第1页第2页第3页第4页第5页一直以来,中国官方在对国内的宣传中都宣称什么中国是所谓的"四大文明古国"之一,我们是一个有着五千年文明历史的古老国家,以此做为教育国民的重要组成部分。这些可笑的论调还流传颇广,深入人心,其实呢,只要稍有一点世界史常识的人都知道这只是个笑话。 首先让我们来看看这个所谓"四大文明古国"的说法,国际上和学术界是不会有这种幼儿园口号式的提法的,比较近似的只有"几大文明发源地"的提法,即便是这样,中国也是排不上什么"四大"的。如果是按照"四个最古老的文明国家"的定义的话,那么,我们中国,不要说四大,连前十大恐怕都排不上,它的文明开始于公元前1500年左右的商王朝,不过三千多年的时间,而其他几大文明早于此之前已经分别存在了两千到一千年,中东两河流域文明开始于公元前3500年左右;埃及尼罗河流域文明也开始于公元前3500年左右,希腊爱琴文明开始于公元前2500年左右,印度河流域文明开始于公元前2500年左右,这只是就大的区域来说,在各大文明区域周边,还有更多次要文明如赫梯文明,亚述文明,腓尼基文明,波斯文明,犹太文明等(这些古代文明正是今天西亚很多国家的前身,这些古代闪米特人和波斯人也正是今日犹太人,阿拉伯人,伊朗人等的祖先)。要按照前面"四大古国"的定义的话,也只能是在这些文明和国家里去排,那里轮得到中国呢。细心的读者可能会发现:从上面列举的文明开始时间来看,排在前面的"四大文明"分别应该是中东文明,埃及文明,希腊文明,印度文明。并没有中国的位置。何以在中国官方的宣传中,希腊的位置消失了,反而变成了晚于其后1000年的中国?这并不是什么无意的错误,实际上,这只是长期以来在官方操纵的反西方政治背景下,有系统有计划地贬低西方文明的各种宣传活动的一个组成部分而已。因为希腊文明是西方文明的源头,中国官方出于意识形态原因,不乐于见到任何表现了西方文明优越性的信息出现,对西方文明的任何方面都要尽可能贬低,再加上掌权的"民族主义者"对西方文明那种极度仇视和嫉妒的心态,所以搞了这样一个偷梁换柱的小手脚。读者可能会问:中国官方宣传的不是"五千年文明"吗?何以实际上只有3500年?那么我们需要搞清楚一些考古学和历史学上的基本常识和概念,而中国的某些"历史学家"长期以来正是靠着混淆这些基本常识和概念来误导愚弄民众。这就是关于"文化"和"文明"这两个概念的区别的问题,以及构成"文明"的几个基本特征。考古学历史学上所说的"文化"和"文明"这两个概念是有严格区别的(虽然我们在日常生活中常常可以把它们混用)。简单说来:"文化(culture)"是一个属于石器时代范畴的概念,用于专指石器时代特别是新石器时代包括金石并用时代的原始部落人类遗迹,而"文明(civilization)"是属于青铜时代范畴的概念,专指人类进入青铜时代以后的国家阶段。其实,从"文化(culture)"和"文明(civilization)"这两个英文单词的词源上我们就可以清楚地看出两者的区别。"文化(culture)"这个单词的词根"cult-"的原始意义是"耕作",这很清楚地表明了"文化"这个概念的本义是属于与"农耕"相联系的原始部落时代的范畴的;而"文明(civilization)"这个单词的词根"civ-"的原始意义是"市民",这也同样清晰的表明了"文明"这个概念的本义是属于与伴随着"市民"的出现而同时产生的"城市"及工商业相联系的青铜时代的范畴的。(城市city这个单词就是从词根"civ-"的变体"cit-"演绎而来的。)而"文明(civilization)"的几个主要特征:文字,金属冶炼术,城市国家(城邦),宗教礼仪,等等(雅斯贝尔的定义),正是与工商业的出现密切相关的。要判定一个文明是否开始了,什么时候开始的,正是按照上述几个标准来核定的,而且是按照考古发现来核定的,而不是用什么神话传说,民间故事,野史杂书,或者是像什么《史记》之类的晚于考古年代两千年之后的所谓"历史纪录"来判定的。这是一个考古学历史学常识。可能有人会问我这样一种问题:那么,我们为什么要用外国人的标准来判定我们自己的历史,我们不能用自己的标准来判定吗?完全可以,但是,"文明"和"文化"这些概念本来就是西方传来的,不仅如此,整个考古学,历史学的方法体系,都是从西方输入的观念,如果要用我们自己的标准,那么我们就不能再用西方的概念来宣扬什么"我们有五千年‘文明"历史",而应该用我们自己的话来说,就是"我们有五千年神话传说的历史"。但是按照这样的标准,我们倒是有"五千年历史"了,而其他国家和地区,特别是地中海周边国家地区及中东地区,他们就不仅是"五千年历史"了,起码都是一万年以上的历史了。这样我们还是占不到什么便宜。而中国的"历史学家"长期以来正是靠着混淆"文化"和"文明"的标准来误导愚弄民众。比如说把属于新石器时代的原始部落文化(如仰韶文化,龙山文化,良渚文化等等)偷换冒充成是所谓"文明"时代,这样中国的历史一下子就提前了一两千年,甚至两三千年。而在介绍其他国家其他文明的时候,又用另一种标准,从人家文明开始的正式起点(文字,金属冶炼术,城市国家出现)严格算起,这样无形中就缩少了中国与那些最古老文明国家间的距离,甚至给人一种错觉,似乎中国比这些实际上比中国文明历史早得多的国家和地区反倒还要早些,而实际上,如果按照中国衡量自己的那种标准,很多国家和地区,特别是地中海周边国家地区以及中东地区,起码都是一万年以上的历史了。就是诸如此类的小伎俩小把戏。下面就让我们来详细地从头审视一下中国及世界的历史。首先从中国文明的历史开始说起。先开门见山地阐明这个基本事实:中国最早的文明——商文明,开始于公元前1500年左右,距今3500年,地点在今河南安阳一带。考古依据:中国地区最早的文字——甲骨文;成熟的青铜冶炼术,及出土的冶炼的青铜器;国家形态已出现。要说明的是:这可不是我的发明,随便找一本国际学术界的世界史著作或者教科书,上面讲述中国文明都是从商王朝为起点开始的。当然,中国自己的历史教科书是从所谓的公元前2000年的"夏王朝"开始算起的。但是国际学术界是不承认这个子虚无有的"夏王朝"的,因为没有任何考古依据:既没有文字出现,也没有冶炼的青铜器发现,更没有表明国家形态存在的任何依据,以及城市遗迹,等等。而中国的这些江湖骗子一样的"历史学家""考古学家",虽然把整个中国地区都翻遍了也没找出什么能证明所谓的"夏王朝"存在过的证据,但还是要厚着脸皮硬把这个幻想中的"夏王朝"塞到教科书和宣传资料中去贩卖给世人,又硬着头皮把在二里头等地发现的一些新石器时代文化遗迹包装一番冒充成是"夏王朝"的所谓"都城"遗迹拿出来蒙骗外行人。我们来看看中国的"考古学家""历史学家"找到了些什么?有一次我听一个《夏商周断代工程》的演讲,主讲的"考古学者"给我们展示了他们宣称是所谓的"夏王朝"的"都城遗迹"复原图,我仔细一看,原来就是几个烂草棚子,一个标准的原始村落,他们把这个叫做"伟大的""夏王朝"的"都城"?还有什么呢,考古现场的几个烂泥堆,那是什么——夯土遗迹,夯土是什么,就是把泥巴堆在一起压紧做墙基,原始部落用来建造窝棚的最原始技术,俗称"干打垒"。他们把这个叫做"伟大的""夏王朝"的"都城"?还有就是一些铜渣子,大量的石器,骨器!这问题不是很清楚了吗?只不过是新石器时代的氏族部落遗迹。所谓的"夏王朝都城"纯属胡扯!要是这算是"都城遗迹",那世界各地的新石器时代文化中的"都城遗迹"就太多了,瑞士汪金的湖居文化(早于公元前5000年),人们用五万根木桩作地基建在湖上的大型村寨,那就比"伟大的""夏王朝"的"都城遗迹"大到不知那里去了。看来西方人脸皮还是太薄了。还有一些考古学家声称在中国其他地方发现了一些铜器,更是误导,那是什么?金石并用时代的用天然铜打造而成的铜器,新石器时代晚期就出现的产物,其他国家和地区的新石器时代文化遗迹中多的是,以此为标准的话,那我前面所提到的那几个古文明地区的历史更要往前提前一两千年。而其他那些古文明地区都发现有标志文明起点的大量完整的城市遗迹,而且都是砖石结构,埃及就不用说了,希腊,西亚,印度河,特别是希腊米诺斯文明遗迹的克诺索斯王宫(公元前2000年),其华丽,在各早期文明中是首屈一指的,我们中国直到四千年之后的现存很多近代宫殿建筑都无法相比。这一点无须多说,实地参观一下就知道了。还有印度河流域的早期文明哈拉巴文明(公元前2500年),在摩亨佐与哈拉巴等地发现了许多完整的城市遗迹,砖石结构,构造复杂。据考证当时城市人口已达到三四万人。还有埃及的南城遗迹等(公元前3500年,涅伽达文明时期)。某些书上错误地说埃及没有城市,玛雅文明印加文明没有文字,实际上都有。比如斯塔夫里阿诺斯的《全球通史》(我早就说过他这本书在细节上是错误百出的)说老实话,所谓"商王朝"的殷墟遗迹其实也不过就是一些夯土遗迹而已,只不过规模稍大一点,根本还不是城市遗迹。要不是发现了甲骨文,冶炼青铜器,国际上也是根本不会承认商文明的。毕竟跟其他国家地区比起来,证据太少了。这是在网上看到的一个质疑的说法 可供参考2023-01-12 16:20:056
充满活力的岁月作文
【篇一:充满活力的岁月】 飞扬的青春,我们共同舞动,我们手拉着手享受着彼此带来的快乐与激情。我们充满活力,不畏人生旅途上的艰险,勇于向未来挑战。 在这个竞争激烈的年代里,我们青少年也能开创属于自己的一片天地。大人们知道我们需要创新,便组织了大大小小的智力竞赛活动。有“机器人大赛”“创新作文大赛”等等。这不但增长了我们的知识,拓宽了我们的视野,而且让我们的竞争意识增强从而提高自身的能力。我们感谢大人们,同时也要拥抱与自己作战的“敌人”,是他们给予我们继续作战的勇气。 在这个充满活力的岁月里,我们挺直腰杆。嘴里说着“决不向困难低头”心里也更加坚定。我们确信,这世上没有失败者,只有不敢拿起军刀的武士。战前学会“运筹帷幄”,战时学会团结合作,战败学会总结经验……就是这么一个个过程的多次循环,才会使我们变得更勇敢、更坚强、更有活力。 活力这个词并不局限于拥有青春的人,只要心里还拥有一片属于自己的阳光的人们。 有了活力就有了用不完的青春,只要有活力就能带给人们快乐、只要有活力…… 在物质生活日益丰富的社会里,活力给我们带来的是更富裕、更充实、更温暖、更多的快乐。活力在着飞扬的青春里是一剂解决苦闷的良药,帮助我们把气馁、空虚都消化掉,并给予我们最珍贵的勇气。 充满活力的岁月,带给我们的是最美好的青春与朝气,我们坚信:阳光总在风雨后,彩虹总在向我们招手。 【篇二:充满活力的岁月】 我们每个人心中都有一座后花园,当我们感到烦忧或困惑时,打开后花园,里面春光明媚,行云流水,里面搭着逍遥桥,流着忘忧泉,飞着天堂鸟。走进里面,让心灵放飞…… ——题记 步入校园,一阵幽香,一切都显得如此美好。我们于晴朗的早晨诵读,在晨风中开始一天紧张的生活,这里记录着我们充满活力的岁月。它,便是校园故事。 初一的生活是快乐而充实的,同学们常常围坐一团,攻克难关,当困心已久的难题被解开时,同学们都笑了,仿佛清风吹走乌云般的爽朗。“少年自有少年狂,渺昆仑,笑吕梁,磨剑数年,今将试锋芒……”这样的豪情壮志,使我心潮澎湃,信心倍增。一个个知识点仿佛也充满活力,微笑着向我们走来。 菁菁校园,留下我们多少故事,这些故事是那么精彩,那么活力四射。这里有笔砚相亲、晨昏相伴的真诚友谊,有比赛场上飞扬着的欢呼与呐喊;这里有默默伏案的少年、勤勉的园丁,有三点一线的紧张,更有青春放歌的朝气。写下它,写下这充满活力的岁月,写下我们难以忘记的校园故事。 我继续大踏步地向前走,让成长的印记深深印入脑海。不管头上的天空是阴霾抑或是晴朗,我都会坦然接受生活赐予的一切。 【篇三:充满活力的岁月作文】 生活被如沙的时光悄悄掩埋,当我们回首时,已了无痕迹。然而,当我们真正聆听和抚摸这尘封的记忆时,你我都能感受到那朝气蓬勃的青春,那充满活力的岁月。 在那充满活力的岁月里,我渴望知识。我愿以整个的青春去苦心设计这东方的金字塔,我愿拿火红的岁月去精心建筑中国特有的最现代的知识殿堂,我要考验一下自己的价值,把知识变为力量,把知识变为智慧,把知识谱成一曲富有创造内涵的青春之歌,把知识写成一篇具有开拓精神的时代乐章。 在那充满活力的岁月里,我渴望生活。我生活在大地上,就要比大地还要坚强,如果我生活在海洋,就要比生活的海洋还要深沉。我要迈出坚实的步履,踏平征途中的一切坎坷。我要乘上时代的巨轮,冲破航道上的坚冰。我相信只要热爱生活,生活就不会辜负她的热爱者。 在那充满活力的岁月里,我渴望长大和成熟,我不愿用天真和幼稚塑造我的形象,而要用老练和诚朴来烙印我的性格。我不愿再别人眼中只是一个无知的小女孩,而是要做一个有真才实学的中国姑娘。 在那充满活力的岁月里,我们会抱着书在树下呵呵傻笑,会沉着冷静的对异性说:“对不起,现在不是谈感情的年龄。” 在那充满活力的岁月里…… 我喜欢十六岁,因为我喜欢那青春的活力,那充满活力的岁月。我就要在充满活力的岁月中追求,在追求中奋进,在奋进中开拓,在开拓中创造,在创造中奉献,奉献一颗十六岁少女金子般的心! 【篇四:充满活力的岁月】 白云悠悠的日子,天空格外的湛蓝,大地异常的空寂。疾风过处,绿草上跃动着一颗充满活力的心。一颗心,再配一双脚,便勾勒出了我去远方放牧青春的风景线。 在这充满活力的岁月里,很想很想在寂寞无人的海边久久伫立,聆听大海深沉雄浑的呼吸,让意识在豁达里消逝,让胆怯在海水对礁石的不屈冲蚀中抛弃。很想很想在蔚蓝的海面乘风破浪,像海鸥一样自由翱翔;很想很想在海边等待,静静地等待那大海分娩红日时阵痛的壮丽,默默地体味落日坠落时的缠绵缱绻。 在这充满活力的岁月里,真想振祥徒步浩瀚的大漠,到撒哈拉勘探宝藏,踏着广袤无垠的草原,重温着三毛的吟唱,让驼铃在空旷中奏响,和着风沙飞扬,或许这里还可以有第二个荷西、第三个荷西的温柔。真想真想在辽阔的草原纵横驰骋,重复着牧歌的粗犷悠长,看护绿色和牛羊。圆月下,我们围着红红的篝火翩翩起舞,品味那柔情似水的眸光。 在这充满活力的岁月里,好想好想划着竹筏迂回于“江作青罗带,山如碧玉簪”的绚丽风光。穿梭于“两岸猿声啼不住,轻舟已过万重山”的画廊,或许这里的某个地方会出现“天街小雨润如酥。草色遥看近却无”的绚丽景象。或许还有人愿再一次“只缘身在此山中”的妙论。 在这充满活力的岁月里,总想登攀峻岭的危峰,俯瞰群峦叠峰,饱览水乡的舟楫荷塘。总还想,登冰峰采撷雪莲,到天池畅然激荡,再踏在红叶铺落的小坡上,弹一曲活力岁月里无穷! 【篇五:充满活力的岁月】 愉悦的童年充满孩子气,激情的青春推动着我不断前进,简单的岁月光辉却充满力。 嫩绿孩子气 “爸爸,爸爸,快过来看,来,你看”,我一边拉扯着爸爸的手,一边用像小蛋糕般酥绵的小手指着一棵绿油油的小草:“爸爸,你说,怎么它这么可爱啊,整个公园,我看最小就是他了。”“哦,小可爱呀,我看整个公园,最小最嫩的是你吧!”“啊,真的吗?哈哈,呃什么是‘嫩"啊”,“呃~"爸爸无言咯! 不过从那起,我知道自己当时是那么有稚气,就像公园离那棵小草,嫩的可爱,绿的天真。 奔腾湛蓝海 我已经迈出了我岁月的第2步,那就是我的青春。 我不断地再训练我的数学题,什么:二次函数、勾股定理、圆的弧长等。我扫了一下我的对手,他也正在做数学题呢,我为了能够超越他,让他败在我旗下,也不断专研这些数学题。每天,我都要和他竞争,为了超越他何能考上重点高中,我不识时日地埋头苦干,让自己的埋得越来越深,成长的越来越茁壮。初三的生活就需要在此最后一击。逐渐的,我的初三生活就像湛蓝的海水一样,不断地奔腾与无边无际的钱咯,去让自己拍打礁石所激起的浪花更加唯美,我的对手就是让我奋力前进的动力。湛蓝湛蓝的海水奔腾于无限岁月,那样的激情,那样的澎湃。 不管是嫩绿的童年,还是湛蓝的青春,都在我岁月间,充满无限活力,让我更珍惜宝贵的岁月! 【篇六:充满活力的"岁月】 现在的我长大了,不会再像以前一样,整天不知疲惫的奔跑,和小伙伴们疯狂的嬉戏。不知是什么时候爱上了在座位上安静的读书。 疯狂嬉戏的童年 “呀!小红你怎么又泼我了,不是说好一起泼小蓝的么?”“对呀,我怎么给忘了呢。”“你们不能这样二对一不公平!”“我不管谁让你上次泼我那么狠。” 最后,我们三个人都浑身湿透了,却不顾形象的指着对方狼狈的样子哈哈大笑。 这是一段充满活力的岁月。 快乐听话的孩童 “同学们说好不好?”“好——”那是不管老师说什么我们都不会提出任何不同意见。但总会哭着说:“我想回家,我想回家!”和小伙伴闹矛盾时总会说:我要告老师。去吃饭时总会说:“手拉手,慢慢走。” 一到下课时就开始了无聊的过家家;疯狂的警察捉小偷。 从容安静的少年 下课了,收拾桌面,准备下节课的课前准备。然后拿起一本书,细细的品味。等待老师进班。上课铃敲响,合了书,放在桌肚里,仔细听老师讲课。自习课写完作业后,继续看书。有人问:“有意思么?”我说:“书是一个安静而不被打扰的世界。” 对呀什么时候变得真么安静?但青春的面庞,旺盛的求知欲,不也是一种活力么? 活力一直与我们同在,只要我们的心脏还在跳动,活力就一直在,不需要多么疯狂的举动,只要有一颗不死的心就好!作文 【篇七:充满活力的岁月】 初中的生活随着年龄的增长变得越来越紧张、单调、乏味。两点一线间的枯燥奔忙让我常常抱怨:生活太缺乏活力了! 那天补课回家,跨上公交车。后车厢里坐着的全是一群外地来沪的打工仔,黑黝黝的皮肤,破旧的衣服,还有大包小包的行李堆在一起。他们有的闭目打盹,有的拿帽子挡太阳,一副疲惫的样子。 车飞快地驶上了南浦大桥的主桥面,他们忽然都探出窗外,有的手指对着窗外指指点点,彼此笑着,笑容中充满了简单而纯粹的快乐与活力。 我朝着他们手指的方向望去,那是黄浦江两岸新建的大厦。哦!我豁然开朗,浦江两岸曾是一片空地与田野,近几年的开发才兴建了许多建筑,那是上海日新月异的变化。他们又指着前方,那是陆家嘴、是东方明珠、是金茂大厦。他们欢愉的笑容中,刚才的疲惫已经消失殆尽,有的是一份活力,一份快乐。 我终于明白,是上海的活力感染了他们。当车驶过浦东新开发的一片绿地时,当车在繁荣的商业区穿梭时,当车从热闹非凡的大卖场门口经过时,他们一次又一次地探出窗外,展现笑容,感悟着上海的活力。 近年的上海发生着日新月异的变化,而我们这些生长在大城市的中学生却无从体会,其实打开自己的视野,用细腻的心灵去感悟生活,我们会发现这是一个充满着活力的岁月。 【篇八:充满活力的岁月】 白驹过隙的一瞬,我抬起头,感觉到岁月正随风吹散,不禁掩面叹息,内心漾起的是一丝欣喜和怀恋。活力四射的初三岁月,青春律动的我们挥汗如雨,只为灿烂在六月。那段岁月是美妙的…… 课上,我们凭借着青春的活力与大胆,与数学老师切磋争辩着一道拓展题,那声音此起彼伏,如跌宕震撼的《生命交响曲》一般,连老师最后都大为惊叹:“后生可畏啊!” 图书馆里,我们欣赏巴尔扎克,品味余秋雨,笑谈塞万提斯……用活力去感受文学,去点燃自己爱文学的心灵。 活力的岁月永远没有完结,活力的岁月永远不知失败。 体育课上,男生们挥汗如雨,女生们在骄阳下以最热烈的欢呼给同伴加油。我,也是男生中的一员,传球、空投,有时也会落空,有时也会失败。但我知道:哪儿跌倒,哪儿爬起来! 课后,我们风趣调侃;回家,我们惜时如金;路上,我们嬉笑成群。充满活力的岁月我们可以苦读至凌晨,充满活力的岁月我们可以在烈日下打球,充满活力的岁月我们可以与老师、同学们成为知心的朋友,充满活力的岁月我们有自信相伴! 而今的岁月正值初三进入尾声,大家免不了有些消沉,为与朋友的分离而苦闷,为和老师的离别而不舍,又为有过初三的那种甜蜜与苦痛的回忆而充实着。别了,充满活力的初三岁月,我将永远珍藏你。2023-01-12 16:20:461
关于校园的800字作文
校园生活在一生中发出璀璨的光辉,我们年轻,我们单纯,我们热情,我们爱我所爱,无拘无束。。。。。。校园生活如一只雄鹰划破苍穹的历程,如此矫健;如一条翔鱼追求速度,如此敏捷;如一个足球飞进球网的弧线,如此美妙。我们珍惜校园里的石子路,踩在上面,形成了一笔浓墨重彩的油画;我们珍惜校园里的绿树,让我们在树荫下谈笑,嬉戏,打闹;我们珍惜醒目的雕塑,写下“我快乐,我发展”的誓言。大多数人都经历过校园生活,过来人对校园生活如此怀念,因为校园生活与现实生活相比是如此的纯洁;正值当年的人对校园生活也是无比热爱,这种热爱,超越古今,思接九州。。。。。。你看,课堂是如此的多彩。《语文》让我们为阿Q的精神胜利法而叹息;《数学》,让我们游弋于勾股定理的海洋;《英语》给了我们接触西方的窗口;《政治》让我们明晰“依法治国”的必要性;《历史》让我们以史为鉴,锻炼自己;《地理》让我们领略珠穆朗玛峰的高耸入云;《物理》让我们知道“万有引力”的知识;《化学》让我们看破元素周期表的奥义;《生物》让我们明白“适者生存”的法则。《美术》让我们赞叹断臂的“维纳斯”;“音乐”让我们合唱“同一首歌”。阅览课可是多彩中的多彩,普通的阅览课没什么,但是电子阅览课却可以让我们在网上冲浪。因为有局域网,有许多男生下好了游戏“CS”,一起联网玩“CS”游戏,一起体会穿越火线的快感。体育课更是极度的多彩,有的人大力抽球,大展神威,把乒乓球玩弄于股掌之中;有的人三步上篮,一枝独秀,把篮球运动的技艺发挥的淋漓尽致;点球让守门员难以猜测,最终压哨绝杀,打出了足球运动的激情。每一节课就像一个生动的故事,惹人心生快意。你听,做操的声音在呼唤。早晨做操的音乐响起,各个班级应声而到,像一条条涓涓细流,汇成了一片汪洋。同学们跟着节拍手舞足蹈,做的有模有样,既锻炼了身体,又完成了艺术之美,美不胜收。上午,课间做眼保健操,同学们做自己的医师,减缓眼睛的疲劳。快看,同学们中午去宿舍休息。每个寝室里有六个床铺,不多不少,还有空调供应。同学们可以好好地睡上一觉,补充体力。学校每一年都要举办运动会,那是一次多彩的盛会。体育健儿在追求“更高更快更强”奥林匹克精神,我们看跳高队员一跃而起,完美越过;我们看跳远队员一触而就,跳出佳绩;我们看100米短跑的队员,如一道闪电冲过终点。运动会是多彩的,引人欣喜。我们还可以在如诗如画的林间小道中散步,我们还可以。。。。。。过校园生活,如同口饮蜂蜜,甘入心田。让我们铭记校园生活的多彩,在多彩中陶醉,陶醉中忘我,忘我中释然。。2023-01-12 16:21:082
中国除了古代的四大发明,还有哪些出名的发明?
太阳风暴——最早发现的太阳黑子 有星孛入于北斗——彗星的观测 朔月辛卯 日有食之——日食记录 日月星辰——阴阳合历 世界最古老的星表——石氏星表 现存最早最完整的历法著作——《太初历》 土圭测日影 星陨如雨——流星群的观测 演示天体视运动的仪器——浑天仪 我国最古老的记时仪器——壶漏 大地测量——子午线的测定 历法革命——沈括的《十二气历》 科苑奇葩——郭守敬发明和研制的天文仪器 我国古代最优秀的历法——郭守敬的《授时历》 周公观景——天文台的设置 我国最早的数学专著——《周髀算经》 精推细算——《九章算术》 运筹帷幄——零与筹算 十进制记数法 中国剩余定理——大衍求一术 祖冲之和圆周率 贾宪三角 一元高次方乘——天元术 朱世杰和他的《四元玉鉴》 双假设法——盈不足术 级数与垛积术的应用 中国——算盘的故乡 磁石的魔力——指南针的发明 《墨经》与第一运动定律 被中香炉与常平架 磁偏角和磁倾角 测量工具——游标卡尺 投影 幻灯——走马灯 神秘的倒影 奇异的镜子——透光镜 世界最早的潜望镜 世界最早的人工磁化法——指南鱼 杰出的机械——指南车 火药的发明 火柴的发明 漆和漆器 China——世界著名的瓷器 石油和天然气 会燃烧的石头——煤的开发和利用 张衡的地动仪 最早的测风仪 云向西 雨没犁——云的观测和云图集 温度观测仪和降水观测仪 天气预报 古老的物候历 我国最早的水利工程——都江堰 引泾往洛—一郑国渠 贯通南北的水利工程——京杭大运河 我国最早的水位站——涪陵石鱼 我国最早的潮汐图——窦叔蒙《涛时图》 古代地理学名著——《水经注》 青铜时代——铜矿开采 煮海为盐——盐卤开采 最早的植物志—— 《南方草木状》 草木鱼虫鸟兽——动植物分类 举杯邀明月 把酒问青天——制曲和酿酒 山中有玉者木旁枝工垂——植物探矿 贾思勰和《齐民要术》 特色鲜明的《王祯农书》 精耕细作五谷丰登 茶的种植与茶文化 鲁桑百丰绵绵——桑蚕技术 济世之谷——豆类植物的栽培和豆类食品 徐光启的《农政全书》 善其事 利其器——铁犁的发明 蓄力播种机——三角耧 扬场工具——扇车 水利灌溉机械——龙骨水车 两利俱全十倍禾稼——桑基鱼塘 内园分得温汤水二月中旬已进瓜——栽培技术 地下渠道——坎儿井 望齐侯之色——中医的诊断术和治疗术 张仲景的《伤寒杂病论》 神农尝百草——中草药治病 伏羲制九针——针灸疗法 华陀麻醉术——麻沸散 免疫法——种痘术 养生延年——激素的提取 铁的冶炼技术 百炼成钢——多种多样炼钢技术 黄铜和锌的冶炼 中国银——含镍白铜的冶炼和西传 水法冶金——胆铜法 三大铸造技术 粮食加工工具——水碓和水磨 最早记录里程的车辆——记里鼓车 纵横驰骋——蹄铁术与马蹬的发明 鲁班与锯刨伞的发明 巨龙横卧——万里长城 世界第八奇迹——秦兵马俑 巧夺天工——风格独具的桥梁 百千家似围棋局十二街如种菜畦——隋大兴城 宫殿建筑的瑰宝——故宫 最高最占老的重楼式木塔——山西应县木塔 不沉之舟之奥秘——水密隔舱 运河船闸 大风起兮车如飞——风帆和帆车 飞行者的至宝——降落伞 凌波之至宝——舵 高效率的推进工具——橹 航海史上的壮举——郑和下“西洋” 航空模型之始——风筝 天文与地文航海技术 水平旋翼和螺旋桨 “骑士阶层”的大敌——火药及火药武器 兵学圣典——《孙子兵法》 战车战船 异彩纷呈的冷兵器 人类文明发展的里程碑——造纸术的发明 雕版印刷术 雕版印刷的最高成就——彩色套印 泥活字印刷技术 木活字印刷术和检字盘 世界上最早的纸币——交子 我国最早的建筑学专著——《营造法式》 嫘祖和原始纺织技术 手摇脚踏纺车 织机和提花机 染料和染色 我国最早的诗歌总集——《诗经》 我国最早的编年体史书——《春秋》 我国第一部纪传体通史——《史记》 我国最早文学理论专著——《文心雕龙》 我国第一部纪事本末体史书——《通鉴纪事本末》 我国古代最大的百科全书——《永乐大典》 我国古代书籍装帧形式 中国最古老的文字——甲骨文 青铜器与金文 秦代标准字体——小篆 今文字的开端——隶书 笔势飞动 直抒性灵——草书 点画萦带 体势流美——行书 结构完美的字体——楷书 我国文献语言学的奠基作——《说文解字》 民族文化中的瑰宝——文房四宝 石窟艺术与敦煌壁画 唐代杰出的艺术品——唐三彩 形式整齐 声调和谐——律诗 婉约豪放说宋词 历史悠久的中国古乐器 朱载堉与“十二平均律” 闻名中外的曾侯乙编钟 我国第一部介绍戏曲作家 作品的专著——《录鬼簿》 生旦净丑——中国的传统戏曲 元曲与关汉卿 中国古代保健体操——五禽戏 中国功夫——武术 中国古代足球——蹴球 古老的棋类运动——中国象棋 奥妙无穷的黑白世界——围棋 造纸为我国古代四大发明之一。 水运仪象台建于北宋末年,由吏部尚书苏颂主持建造,是一座大型天文仪器,是具有世界性影响的中国古代的伟大科技成就。 蚊香的发明可能与古人端午节的卫生习俗及烧香祭祀的习俗有关。 黑火药,指南针,印刷术。 人类文明的曙光——火 人类最早的远程武器——弓箭 人类最早的工具——石器 中医中药对世界最伟大的贡献是其防病治病的实践技术。 中国是数学古国,《九章算术》、《数术九章》是古代数学名著。 中国还是天文学古国,中国是世界上最早有文字记载太阳黑子、哈雷彗星、超新星等天象的国家。 在造纸术、指南针、火药、活字印刷术四大发明,中医中药、10进位值制、赤道坐标系、雕版印刷术新四大发明之外,瓷器、丝绸、金属冶铸、深耕细作等影响世界科技发展的中国古代发明还可以列举出许多。 24节气堪称我国古代第五大发明 在物理学、化学、生物学等方面也出现了许多新的进展。我们的祖先创造了中国古代科学技术繁荣发展的两个黄金时代。 我国是传统的农业国家,水利是农业的命脉,古代仅唐以前的大型水利工程就有都江堰、郑国渠、灵渠、龙首渠、京航大运河等。隋朝兴建的京杭 大运河是世界上最早最长的航行运河。这些工程无论在建筑规模、技术水平 还是在农业灌溉、航行、运输的获益等方面都是中世纪欧洲无法比拟的。 春秋战国时期墨家学派的代表人物墨子,在《墨经》一书中提出了点、线、 方、圆等几何概念。《周髀算经》已有勾股定理的运算方法。成书于汉代的 《九章算术》共收有应用题的解答方法246个,内容十分丰富,在算术、代数 等方面取得了很高成就,特别在解决实际问题方面,远远胜过古希腊的数学 体系。祖冲之用“割圆术”求出的圆周率十分精确,在世界上处于遥遥领先 的地位。 尤其需要提及的是我国古代对世界文明发展的突出贡献—“四大发明,它 凝聚着我国古代劳动人民的智慧与创造。 指南针发明于两千多年前的战国时代。当时的人们把天然磁石磨成勺形, 放在光滑的平面上,使之指出南北方向,这种指南仪被称为“司南”。北宋时 已用人工磁化方法制造指南仪。曾公亮1044年编辑的《武经总略》一书记载 了“指南鱼”的制造方法。大科学家沈括在《梦溪笔谈》中也进一步说明了 用铁针磁化制作指南针的方法。指南针发明不久,被用于航海,它指引着中 国远洋船队航行于南太平洋和印度洋航线上,并在十二世纪传入阿拉伯,以 后传入欧洲。 造纸术的发明是中国劳动人民从漂絮和沤麻的经验中总结出来的,始于西 汉。新疆罗布卓尔汉烽燧遗址出土的西汉古纸,都是植物纤维纸,质地还比 较粗糙,东汉主管御用手工作坊的蔡伦,他凭借充足的人力物力,在总结工 匠经验的基础上,以破布、树皮、旧麻为原料,改进造纸工艺,制造出一批 质量比较高的实用纸。造纸技术首先传到朝鲜和越南,七世纪传到日本,八 世纪传到阿拉伯,十三世纪传到欧洲。 印刷术的发明,大体经历了从雕版印刷到活字印刷两大阶段。大约在隋代, 人们在印章石刻的拓印方法启示下,发明了雕版印刷技术。北宋时期(约在 公元1041-1049年),平民发明家毕升,发明了活字印刷技术,它用胶泥制成 活字,然后排版印刷,既经济又方便,大大提高了效率,是印刷史上的一次 大的革命。元代王祯又研制成功了木活字,还发明了转轮排字架。 火药的发明始于炼丹术。炼丹士在炼丹过程中,偶然发现点燃硝、硫、木 炭为主要原料的混合物,会引起燃烧和爆炸。火药发明后,被用于军事,结 果改变了战争的面貌,也改变了历史的进程。正如马克思所说:“火药把骑士 阶层炸得粉碎”。在北宋的抗金战争中,宋军使用了“霹雳炮”、震天响等杀 伤力很大的火药武器。宋代后期,又发明了火药砂枪、火药炮。火药大约于 1225至1248年,由商人传入印度和阿拉伯,以后传人西方。 中国的科学技术在一个相当长的历史时期内居于世界的领先地位。我们对 我国祖先科学创造、发明的揭示与探源的目的,是为了更好地启迪广大青少 年勤奋好学、开拓进取之心。 历史发展到今天,已进入声光电的影像时代,知识信息的传播,形象、直 观。本书选用“图话”的形式,以“图”展现历史风貌和各种形象,以“话” 叙说史实,图文互补,有景有情地向读者展示了祖国几千年文明发展的累累 硕果。 本书虽名为《中国古代发明图话》,但是其中的一些条目并不是严格意义 的发明,如一些天文现象,是我们祖先最先观测到的,是属于发现方面的内 容,但由于对社会生产实践和人民日常生活起过重要作用,意义重大,又有 开创性,我们也放在本书中一并讲述。 再如,有些学术著作,对某一领域里的发明创造作了真实、完整的记录和 描述。历史上的科研成果,主要是靠著作才得以总结、流传下来,如《周髀 算经》、《王祯农书》等。我们也收到本书中。对同一学科,内容相近的学术 著作,我们只选择撰写年代比较早的,加以介绍、讲述。 本书没有采用编年史的框架,基本上按天文、历法、物理、化学化工、地 学、生物学、农学、医药学、轻工、冶金机械、建筑、航行航空、军事、文 化艺术的顺序编排,但又未作严格的分类有些条目在内容上有交差,如:四 大发明之一的火药,在火药的发明中作了介绍,在火药武器中又有涉及;再如种桑养蚕,在桑基鱼塘中讲述,在纺织的有关条目中又进一步阐述。我们 这样做的目的,不仅是照顾叙述上的方便,而且也是为了使读者更加全面、 准确地掌握有关知识。并且在条目内容有交差的同时又有侧重。 我国的传统文化深厚、绚丽,有许多文献典籍流传下来。以往的同类出版 物只介绍科技领域里的发明发现,其实,在社会科学领域中我们祖先同样有 独特的发明创造,如:汉字、诗词歌赋、音律和古代乐器等等。它们都是人 类文明发展的重要组成部分,对推动社会发展同样起着不可低估的历史作用。 为此,我们增加了一些社会科学方面的有关条目,这是本书的独到之处。 在图片的选用方面,除了展示器物以外,我们还注意表现古代科学家在著 述、发明时的情态和当时的社会生活场景,向读者展示百折不挠的科学巨匠 在发明创造过程中,一个个奇特有趣的感人故事,以增强历史感和艺术感染力,使读者进一步体会到发明者的艰辛。2023-01-12 16:22:119
宋朝时候的民间是个什么样子的?人们都做什么了?
宋朝的城镇商品经济特别发达。北宋末期有四十六个十万口以上的城市。包括开封、洛阳、应天(今商丘)、大名、杭州、镇江、苏州、江陵(荆州)、广州、成都、福州、潭州(今长沙)、泉州等。宋朝首都东京开封府人口达到百万以上,店铺多达六千四百余家。宋朝打破坊市分区的制度,商店可以任意开设,还出现夜市与晓市。南宋行在临安府(今杭州)人口在1274年达到125万,城内极其繁华,时人称为东南第一州。就连南宋灭亡后,马可·波罗依然称杭州为“天城”。宋是中国文明的第二次浪潮。不仅使神韵文明向绝对化发展,还使平民文化发展起来。戏艺,有滑稽剧、杂技、傀儡戏、皮影戏、说话、杂剧等等。其中杂技就有上百种。宋人小资情节严重,宋词中抒发的感情大多都是抒发那种浅斟低唱的闲情逸趣。宋词体现了宋朝稳定的政治局势、繁荣丰富优越的社会生活。宋朝一般家庭不做早餐,因为这就跟现代人生活一样,在家做饭的成本还不如去小餐馆,那时宋朝卖早点的地方实在是太多了,两文钱就能吃饱,谁还在家做费那劲。宋朝特色的早点“灌肺”“炒肺”然后就是稀饭,干粮应有尽有,想吃饱那自然很容易了。消遣上午的时间那实在是很容易,因为能玩的东西实在是太多了,斗斗鸟、蟋蟀、然后蹴鞠、锤丸,捶丸就有点像门球,通常来说文人雅士都并不喜欢运动量大的玩法,所以捶丸就变得挺常见。然后玩完之后眼看也到了中午,下馆子吃饭,宋朝的饭店很多。大大小小的馆子也是琳琅满目,宋朝在吃上也讲究,有很多人是去消磨时间的,听着助兴的小曲,然后和朋友一边谈天一边吃着美食,喝上一壶小酒,这是很充实的。扩展资料:宋朝城市:清明上河图描绘北宋京城汴梁及汴河两岸的繁华和热闹的景象和优美的自然风光宋朝的城镇商品经济特别发达。北宋末期有四十六个十万口以上的城市。包括开封、洛阳、临安(杭州)、大名、应天(今商丘)、镇江、平江(苏州)、江陵(今荆州)、广州、成都、福州、潭州(今长沙)、泉州等。北宋首都东京开封府人口达到百万以上,店铺多达六千四百余家。宋朝打破了坊市分区的制度,商店可以任意开设,还出现了夜市与晓市。南宋行在临安府(今浙江省杭州市)人口在1274年达到125万,城内极其繁华,时人称为东南第一州。就连南宋灭亡后,马可·波罗依然称杭州为“天城”。妇女的地位在宋朝大幅度下降。贞节观在宋朝得到了发扬,从宋朝开始在中上层阶层妇女实行的缠足风俗严重迫害妇女的身体与心灵,官妓这种制度在宋朝已经沦为出卖肉体的工具,且花样繁新。参考资料来源:百度百科-宋朝文化参考资料来源:百度百科-宋朝2023-01-12 16:22:533
关于勾股定理的小故事
勾股定理小故事毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着是正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言。这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形磁砖,但毕达哥拉斯不只是欣赏磁砖的美丽,而是想到它们和[数]之间的关系,于是拿了画笔并且蹲在地板上,选了一块磁砖以它的对角线 AB为边画一个正方形,他发现这个正方形面积恰好等于两块磁砖的面积和。他很好奇,于是再以两块磁砖拼成 的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块磁砖的面积,也就是以两股为边作正方形面积之和。至此毕达哥拉斯作了大胆的假设: 任何直角三角形,其斜边的平方恰好等于另两边平方之和。扩展资料:勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。参考资料:勾股定理-百度百科2023-01-12 16:23:341
勾股定理的故事
勾股定理趣事 学过几何的人都知道勾股定理.它是几何中一个比较重要的定理,应用十分广泛.迄今为止,关于勾股定理的证明方法已有400多种.其中,美国第二十任总统伽菲尔德的证法在数学史上被传为佳话. 总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案是否定的.事情的经过是这样的; 勾股的发现 在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正 在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会地 谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使伽菲尔德循 声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正 俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干 什么? 只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。 于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。 1881年,伽菲尔德就任美国第二十任总统。后来, 勾股的证明 人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。 勾股定理同时也是数学中应用最广泛的定理之一。例如从勾股定理出发逐渐发展了开平方、开立方;用勾股定理求圆周率。据称金字塔底座的四个直角就是应用这一关系来确定的.至今在建筑工地上,还在用它来放线,进行“归方”,即放“成直角”的线。 正因为这样,人们对这个定理的备加推崇便不足为奇了。1955年希腊发行了一张邮票,图案是由三个棋盘排列而成。这张邮票是纪念二千五百年前希腊的一个学派和宗教团体 —— 毕达哥拉斯学派,它的成立以及在文化上的贡献。邮票上的图案是对勾股定理的说明。希腊邮票上所示的证明方法,最初记载在欧几里得的《几何原本》里。 尼加拉瓜在1971年发行了一套十枚的纪念邮票,主题是世界上“十个最重要的数学公式”,其中之一便是勾股定理。2002年的世界数学家大会在中国北京举行,这是21世纪数学家的第一次大聚会,这次大会的会标就选定了验证勾股定理的“弦图”作为中央图案,可以说是充分表现了我国古代数学的成就,也充分弘扬了我国古代的数学文化,另外,我国经过努力终于获得了2002年数学家大会的主办权,这也是国际数学界对我国数学发展的充分肯定。 今天,世界上几乎没有人不知道七巧板和七巧图,它在国外被称为“唐图”(Tangram),意思是中国图(不是唐代发明的图)。七巧板的历史也许应该追溯到我国先秦的古籍《周髀算经》,其中有正方形切割术,并由之证明了勾股定理。而当时是将大正方形切割成四个同样的三角形和一个小正方形,即弦图,还不是七巧板。现在的七巧板是经过一段历史演变过程的。 勾股趣事 甚至还有人提出过这样的建议:在地球上建造一个大型装置,以便向可能会来访的“天外来客”表明地球上存在有智慧的生命,最适当的装置就是一个象征勾股定理的巨大图形,可以设在撒哈拉大沙漠、苏联的西伯利亚或其他广阔的荒原上,因为一切有知识的生物都必定知道这个非凡的定理,所以用它来做标志最容易被外来者所识别!? 有趣的是:除了三元二次方程x2 + y2 =z2(其中x、y、z都是未知数)有正整数解以外,其他的三元n次方程xn + yn =zn(n为已知正整数,且n>2)都不可能有正整数解。这一定理叫做费尔马大定理(费尔马是17世纪法国数学家)。2023-01-12 16:24:153
关于勾股定理的小故事? 无
勾股的发现 在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使伽菲尔德循 声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干 什么? 只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味. 于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题.他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法. 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法. 1881年,伽菲尔德就任美国第二十任总统.后来, 勾股的证明 人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法. 勾股定理同时也是数学中应用最广泛的定理之一.例如从勾股定理出发逐渐发展了开平方、开立方;用勾股定理求圆周率.据称金字塔底座的四个直角就是应用这一关系来确定的.至今在建筑工地上,还在用它来放线,进行“归方”,即放“成直角”的线. 正因为这样,人们对这个定理的备加推崇便不足为奇了.1955年希腊发行了一张邮票,图案是由三个棋盘排列而成.这张邮票是纪念二千五百年前希腊的一个学派和宗教团体 —— 毕达哥拉斯学派,它的成立以及在文化上的贡献.邮票上的图案是对勾股定理的说明.希腊邮票上所示的证明方法,最初记载在欧几里得的《几何原本》里. 尼加拉瓜在1971年发行了一套十枚的纪念邮票,主题是世界上“十个最重要的数学公式”,其中之一便是勾股定理. 2002年的世界数学家大会在中国北京举行,这是21世纪数学家的第一次大聚会,这次大会的会标就选定了验证勾股定理的“弦图”作为中央图案,可以说是充分表现了我国古代数学的成就,也充分弘扬了我国古代的数学文化,另外,我国经过努力终于获得了2002年数学家大会的主办权,这也是国际数学界对我国数学发展的充分肯定. 今天,世界上几乎没有人不知道七巧板和七巧图,它在国外被称为“唐图”(Tangram),意思是中国图(不是唐代发明的图).七巧板的历史也许应该追溯到我国先秦的古籍《周髀算经》,其中有正方形切割术,并由之证明了勾股定理.而当时是将大正方形切割成四个同样的三角形和一个小正方形,即弦图,还不是七巧板.现在的七巧板是经过一段历史演变过程的. 勾股趣事 甚至还有人提出过这样的建议:在地球上建造一个大型装置,以便向可能会来访的“天外来客”表明地球上存在有智慧的生命,最适当的装置就是一个象征勾股定理的巨大图形,可以设在撒哈拉大沙漠、苏联的西伯利亚或其他广阔的荒原上,因为一切有知识的生物都必定知道这个非凡的定理,所以用它来做标志最容易被外来者所识别! 有趣的是:除了三元二次方程x2 + y2 =z2(其中x、y、z都是未知数)有正整数解以外,其他的三元n次方程xn + yn =zn(n为已知正整数,且n>2)都不可能有正整数解.这一定理叫做费尔马大定理(费尔马是17世纪法国数学家).2023-01-12 16:24:361
勾股定理由来是什么?
公元前十一世纪,数学家商高(西周初年人)就提出“勾三、股四、弦五”。编写于公元前一世纪以前的《周髀算经》中记录着商高与周公的一段对话。商高说:“……故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用数形结合得到方法,给出了勾股定理的详细证明,后刘徽在刘徽注中亦证明了勾股定理。在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。勾股定律的意义:1.勾股定理的证明是论证几何的发端。2.勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理。3.勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解。4.勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理。5.勾股定理是欧氏几何的基础定理,并有巨大的实用价值。这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。2023-01-12 16:24:571
关于勾股定理的小故事
在中国古代大约是西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。周公问商高:“天不可阶而升,地不可将尽寸而度。”天的高度和地面的一些测量的数字是怎么样得到的呢?商高说:“故折矩以为勾广三,股修四,经隅五。”在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”。商高答话的意思是:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫做“商高定理”。扩展资料:最早应用:从很多泥板记载表明,巴比伦人是世界上最早发现“勾股定理”的,这里只举一例。例如公元前1700年的一块泥板(编号为BM85196)上第九题,大意为“有一根长为5米的木梁(AB)竖直靠在墙上,上端(A)下滑一米至D。问下端(C)离墙根(B)多远?”他们解此题就是用了勾股定理, 设AB=CD=l=5米,BC=a,AD=h=1米,则BD=l-h=5-1米=4米 ∵a=√[l2-(l-h)2]=√[52-(5-1)2]=3米,∴三角形BDC正是以3、4、5为边的勾股三角形。《周髀算经》中勾股定理的公式与证明 《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是中国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。首先,《周髀算经》中明确记载了勾股定理的公式:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”(《周髀算经》上卷二) 而勾股定理的证明呢,就在《周髀算经》上卷一—— 昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?” 商高曰:“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为勾广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所生也。” 周公对古代伏羲(包牺)构造周天历度的事迹感到不可思议(天不可阶而升,地不可得尺寸而度),就请教商高数学知识从何而来。于是商高以勾股定理的证明为例,解释数学知识的由来。 参考链接:勾股定理的逆定理-百度百科 勾股定理-百度百科2023-01-12 16:25:381
勾股定理是谁发现的
勾股定理勾股定理又叫商高定理、毕氏定理,或称毕达哥拉斯定理(Pythagoras Theorem).在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。如果直角三角形两直角边分别为a、b,斜边为c,那么a²+b²=c²据考证,人类对这条定理的认识,少说也超过 4000 年!中国最早的一部数学著作——《周髀算经》的第一章,就有这条定理的相关内容:周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”就是说,矩形以其对角相折所称的直角三角形,如果勾(短直角边)为3,股(长直角边)为4,那么弦(斜边)必定是5。从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要的数学原理了。在西方有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。除上述两个例子外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。但是,这一传说引起过许多数学史家的怀疑。比如说,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得证实。”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为 30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。这说明,勾股定理实际上早已进入了人类知识的宝库。勾股定理是几何学中的明珠,它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单又实用,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。(※关于勾股定理的详细证明,由于证明过程较为繁杂,不予收录。) 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。 【附录】 一、【《《周髀算经》·》简介】 《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。 二、【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。 于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。解:勾股定理的内容:直角三角形两直角边a、b的平方和等于斜边c的平方,a²+b²=c²说明:我国古代学者把直角三角形的较短直角边称为“勾”,较长直角边为“股”,斜边称为“弦”,所以把这个定理成为“勾股定理”。勾股定理揭示了直角三角形边之间的关系。举例:如直角三角形的两个直角边分别为3、4,则斜边c2= a2+b2=9+16=25则说明斜边为5。2023-01-12 16:26:193
关于勾股定理的证明过程
勾股定理(又叫「毕氏定理」)说:「在一个直角三角形中,斜边边长的平方等於两条直角边边长平方之和。」据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明! 我觉得,证明多,固然是表示这个定理十分重要,因而有很多人对它作出研究;但证明多,同时令人眼花缭乱,亦未能够一针见血地反映出定理本身和证明中的数学意义。故此,我在这篇文章中,为大家选出了 7 个我认为重要的证明,和大家一起分析和欣赏这些证明的特色,与及认识它们的历史背境。 证明一 图一 在图一中,D ABC 为一直角三角形,其中 Ð A 为直角。我们在边 AB、BC 和 AC 之上分别画上三个正方形 ABFG、BCED 和 ACKH。过 A 点画一直线 AL 使其垂直於 DE 并交 DE 於 L,交 BC 於 M。不难证明,D FBC 全等於 D ABD(S.A.S.)。所以正方形 ABFG 的面积 = 2 ´ D FBC 的面积 = 2 ´ D ABD 的面积 = 长方形 BMLD 的面积。类似地,正方形 ACKH 的面积 = 长方形 MCEL 的面积。即正方形 BCED 的面积 = 正方形 ABFG 的面积 + 正方形 ACKH 的面积,亦即是 AB2 + AC2 = BC2。由此证实了勾股定理。 这个证明巧妙地运用了全等三角形和三角形面积与长方形面积的关系来进行。不单如此,它更具体地解释了,「两条直角边边长平方之和」的几何意义,这就是以 ML 将正方形分成 BMLD 和 MCEL 的两个部分! 这个证明的另一个重要意义,是在於它的出处。这个证明是出自古希腊大数学欧几里得之手。 欧几里得(Euclid of Alexandria)约生於公元前 325 年,卒於约公元前 265 年。他曾经在古希腊的文化中心亚历山大城工作,并完成了著作《几何原本》。《几何原本》是一部划时代的著作,它收集了过去人类对数学的知识,并利用公理法建立起演绎体系,对后世数学发展产生深远的影响。而书中的第一卷命题 47,就记载著以上的一个对勾股定理的证明。 证明二 图二 图二中,我们将4个大小相同的直角三角形放在一个大正方形之内,留意大正方形中间的浅黄色部分,亦都是一个正方形。设直角三角形的斜边长度为 c,其余两边的长度为 a 和 b,则由於大正方形的面积应该等於 4 个直角三角形和中间浅黄色正方形的面积之和,所以我们有 (a + b)2 = 4(1/2 ab) + c2 展开得 a2 + 2ab + b2 = 2ab + c2 化简得 a2 + b2 = c2 由此得知勾股定理成立。 证明二可以算是一个非常直接了当的证明。最有趣的是,如果我们将图中的直角三角形翻转,拼成以下的图三,我们依然可以利用相类似的手法去证明勾股定理,方法如下: 图三 由面积计算可得 c2 = 4(1/2 ab) + (b - a)2 展开得 = 2ab + b2 - 2ab + a2 化简得 c2 = a2 + b2(定理得证) 图三的另一个重要意义是,这证明最先是由一个中国人提出的!据记载,这是出自三国时代(即约公元 3 世纪的时候)吴国的赵爽。赵爽为《周髀算经》作注释时,在书中加入了一幅他称为「勾股圆方图」(或「弦图」)的插图,亦即是上面图三的图形了。 证明三 图四 图四一共画出了两个绿色的全等的直角三角形和一个浅黄色的等腰直角三角形。不难看出,整个图就变成一个梯形。利用梯形面积公式,我们得到∶ 1/2(a + b)(b + a) = 2(1/2 ab) + 1/2 c2 展开得 1/2 a2 + ab + 1/2 b2 = ab + 1/2 c2 化简得 a2 + b2 = c2(定理得证) 有一些书本对证明三十分推祟,这是由於这个证明是出自一位美国总统之手! 在 1881 年,加菲(James A. Garfield; 1831 - 1881)当选成为美国第 20 任总统,可惜在当选后 5 个月,就遭行刺身亡。至於勾股定理的有关证明,是他在 1876 年提出的。 我个人觉得证明三并没有甚麼优胜之处,它其实和证明二一样,只不过它将证明二中的图形切开一半罢了!更何况,我不觉得梯形面积公式比正方形面积公式简单! 又,如果从一个老师的角度来看,证明二和证明三都有一个共同的缺点,它就是需要到恒等式 (a ± b)2 = a2 ± 2ab + b2 了。虽然这个恒等式一般都包括在中二的课程之中,但有很多学生都未能完全掌握,由於以上两个证明都使用了它,往往在教学上会出现学生不明白和跟不上等问题。 证明四 (a) (b) (c) 图五 证明四是这样做的:如图五(a),我们先画一个直角三角形,然后在最短的直角边旁向三角形那一边加上一个正方形,为了清楚起见,以红色表示。又在另一条直角边下面加上另一个正方形,以蓝色表示。接著,以斜边的长度画一个正方形,如图五(b)。我们打算证明红色和蓝色两个正方形面积之和,刚好等於以斜边画出来的正方形面积。 留意在图五(b)中,当加入斜边的正方形后,红色和蓝色有部分的地方超出了斜边正方形的范围。现在我将超出范围的部分分别以黄色、紫色和绿色表示出来。同时,在斜边正方形内,却有一些部分未曾填上颜色。现在依照图五(c)的方法,将超出范围的三角形,移入未有填色的地方。我们发现,超出范围的部分刚好填满未曾填色的地方!由此我们发现,图五(a)中,红色和蓝色两部分面积之和,必定等於图五(c)中斜边正方形的面积。由此,我们就证实了勾股定理。 这个证明是由三国时代魏国的数学家刘徽所提出的。在魏景元四年(即公元 263 年),刘徽为古籍《九章算术》作注释。在注释中,他画了一幅像图五(b)中的图形来证明勾股定理。由於他在图中以「青出」、「朱出」表示黄、紫、绿三个部分,又以「青入」、「朱入」解释如何将斜边正方形的空白部分填满,所以后世数学家都称这图为「青朱入出图」。亦有人用「出入相补」这一词来表示这个证明的原理。 在历史上,以「出入相补」的原理证明勾股定理的,不只刘徽一人,例如在印度、在阿拉伯世界、甚至乎在欧洲,都有出现过类似的证明,只不过他们所绘的图,在外表上,或许会和刘徽的图有些少分别。下面的图六,就是将图五(b)和图五(c)两图结合出来的。留意我经已将小正方形重新画在三角形的外面。看一看图六,我们曾经见过类似的图形吗? 图六 其实图六不就是图一吗?它只不过是将图一从另一个角度画出罢了。当然,当中分割正方形的方法就有所不同。 顺带一提,证明四比之前的证明有一个很明显的分别,证明四没有计算的部分,整个证明就是单靠移动几块图形而得出。我不知道大家是否接受这些没有任何计算步骤的「证明」,不过,我自己就非常喜欢这些「无字证明」了。 图七 在多种「无字证明」中,我最喜欢的有两个。图七是其中之一。做法是将一条垂直线和一条水平线,将较大直角边的正方形分成 4 分。之后依照图七中的颜色,将两个直角边的正方形填入斜边正方形之中,便可完成定理的证明。 事实上,以类似的「拼图」方式所做的证明非常之多,但在这裏就未有打算将它们一一尽录了。 另一个「无字证明」,可以算是最巧妙和最简单的,方法如下: 证明五 (a) (b) 图八 图八(a)和图二一样,都是在一个大正方形中,放置了4个直角三角形。留意图中浅黄色部分的面积等於 c2。现在我们将图八(a)中的 4 个直角三角形移位,成为图八(b)。明显,图八(b)中两个浅黄色正方形的面积之和应该是 a2 + b2。但由於(a)、(b)两图中的大正方形不变,4 个直角三角形亦相等,所以余下两个浅黄色部的面积亦应该相等,因此我们就得到 a2 + b2 = c2,亦即是证明了勾股定理。 对於这个证明的出处,有很多说法:有人说是出自中国古代的数学书;有人相信当年毕达哥拉斯就是做出了这个证明,因而宰杀了一百头牛来庆祝。总之,我觉得这是众多证明之中,最简单和最快的一个证明了。 不要看轻这个证明,它其实包含著另一个意义,并不是每一个人都容易察觉的。我现在将上面两个图「压扁」,成为图九: (a) (b) 图九 图九(a)中间的浅黄色部分是一个平行四边形,它的面积可以用以下算式求得:mn sin(a + b),其中 m 和 n 分别是两个直角三角形斜边的长度。而图九(b)中的浅黄色部分是两个长方形,其面积之和是:(m cos a)(n sin b) + (m sin a)(n cos b)。正如上面一样,(a)、(b)两图浅黄色部分的面积是相等的,所以将两式结合并消去共有的倍数,我们得:sin(a + b) = sin a cos b + sin b cos a,这就是三角学中最重要的复角公式!原来勾股定理和这条复角公式是来自相同的证明的! 在证明二中,当介绍完展开 (a + b)2 的方法之后,我提出了赵爽的「弦图」,这是一个展开 (a - b)2 的方法。而证明五亦有一个相似的情况,在这裏,我们除了一个类似 (a + b) 的「无字证明」外,我们亦有一个类似 (a - b) 的「无字证明」。这方法是由印度数学家婆什迦罗(Bhaskara; 1114 - 1185)提出的,见图十。 (a) (b) 图十 证明六 图十一 图十一中, 我们将中间的直角三角形 ABC 以 CD 分成两部分,其中 Ð C 为直角,D 位於 AB 之上并且 CD ^ AB。设 a = CB,b = AC,c = AB,x = BD,y = AD。留意图中的三个三角形都是互相相似的,并且 D DBC ~ D CBA ~ D DCA,所以 = 和 = 由此得 a2 = cx 和 b2 = cy 将两式结合,得 a2 + b2 = cx + cy = c(x + y) = c2。定理得证。 证明六可以说是很特别的,因为它是本文所有证明中,唯一一个证明没有使用到面积的概念。我相信在一些旧版的教科书中,也曾使用过证明六作为勾股定理的证明。不过由於这个证明需要相似三角形的概念,而且又要将两个三角形翻来覆去,相当复杂,到今天已很少教科书采用,似乎已被人们日渐淡忘了! 可是,如果大家细心地想想,又会发现这个证明其实和证明一(即欧几里得的证明)没有分别!虽然这个证明没有提及面积,但 a2 = cx 其实就是表示 BC 上正方形的面积等於由 AB 和 BD 两边所组成的长方形的面积,这亦即是图一中黄色的部分。类似地,b2 = cy 亦即是图一中深绿色的部分。由此看来,两个证明都是依据相同的原理做出来的! 证明七 (a) (b) (c) 图十二 在图十二(a)中,我们暂时未知道三个正方形面积之间有甚麼直接的关系,但由於两个相似图形面积之比等於它们对应边之比的平方,而任何正方形都相似,所以我们知道面积 I : 面积 II : 面积 III = a2 : b2 : c2。 不过,细心地想想就会发现,上面的推论中,「正方形」的要求是多余的,其实只要是一个相似的图形,例如图十二(b)中的半圆,或者是图十二(c)中的古怪形状,只要它们互相相似,那麼面积 I : 面积 II : 面积 III 就必等於 a2 : b2 : c2了! 在芸芸众多的相似图形中,最有用的,莫过於与原本三角形相似的直角三角形了。 (a) (b) 图十三 在图十三(a)中,我在中间的直角三角形三边上分别画上三个和中间三角形相似的直角三角形。留意:第 III 部分其实和原本三角形一样大,所以面积亦相等;如果我们从三角形直角的顶点引一条垂直线至斜边,将中间的三角形分成两分,那麼我们会发现图十三(a)的面积 I 刚好等於中间三角形左边的面积,而面积 II 亦刚好等於右边的面积。由图十三(b)可以知道:面积 I + 面积 II = 面积 III。与此同时,由於面积 I : 面积 II : 面积 III = a2 : b2 : c2,所以 a2 + b2 = c2。 七个证明之中,我认为这一个的布局最为巧妙,所用的数学技巧亦精彩。可惜对一个初中学生而言,这个证明就比较难掌握了。 我不太清楚这个证明的出处。我第一次认识这个证明,是在大学时候,一位同学从图书馆看到这个证明后告诉我的。由於印象深刻,所以到了今天仍依然记忆犹新。 欧几里得《几何原本》的第六卷命题 31 是这样写的:「在直角三角形中,对直角的边上所作的图形等於夹直角边上所作与前图相似且有相似位置的二图形之和。」我估计,相信想出证明七的人,应该曾经参考过这一个命题。==================================================图片请按下面的连接2023-01-12 16:26:416
勾股定理的解释
魅力无比的定理证明 ——勾股定理的证明 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法 画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a2+b2=c2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法 直接在直角三角形三边上画正方形,如图。 容易看出, △ABA" ≌△AA"" C。 过C向A""B""引垂线,交AB于C",交A""B""于C""。 △ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。 于是, S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD • BA, ① 由△CAD∽△BAC可得AC2=AD • AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。 【附录】 一、【《周髀算经》简介】 《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。 二、【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。 于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。 转引自:http://tw.ntu.edu.cn/education/yanjiu/中“数学的发现”栏目。图无法转贴,请查看原文。2023-01-12 16:27:236
勾股定理的故事
分类: 理工学科 问题描述: 一定要关于勾股定理的故事哦! 解析: 勾股定理趣事 学过几何的人都知道勾股定理.它是几何中一个比较重要的定理,应用十分广泛.迄今为止,关于勾股定理的证明方法已有400多种.其中,美国第二十任总统伽菲尔德的证法在数学史上被传为佳话. 总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案是否定的.事情的经过是这样的; 勾股的发现 在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正 在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会地 谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使伽菲尔德循 声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正 俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干 什么? 只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。 于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。 1881年,伽菲尔德就任美国第二十任总统。后来, 勾股的证明 人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。 勾股定理同时也是数学中应用最广泛的定理之一。例如从勾股定理出发逐渐发展了开平方、开立方;用勾股定理求圆周率。据称金字塔底座的四个直角就是应用这一关系来确定的.至今在建筑工地上,还在用它来放线,进行“归方”,即放“成直角”的线。 正因为这样,人们对这个定理的备加推崇便不足为奇了。1955年希腊发行了一张邮票,图案是由三个棋盘排列而成。这张邮票是纪念二千五百年前希腊的一个学派和宗教团体 —— 毕达哥拉斯学派,它的成立以及在文化上的贡献。邮票上的图案是对勾股定理的说明。希腊邮票上所示的证明方法,最初记载在欧几里得的《几何原本》里。 尼加拉瓜在1971年发行了一套十枚的纪念邮票,主题是世界上“十个最重要的数学公式”,其中之一便是勾股定理。 2002年的世界数学家大会在中国北京举行,这是21世纪数学家的第一次大聚会,这次大会的会标就选定了验证勾股定理的“弦图”作为中央图案,可以说是充分表现了我国古代数学的成就,也充分弘扬了我国古代的数学文化,另外,我国经过努力终于获得了2002年数学家大会的主办权,这也是国际数学界对我国数学发展的充分肯定。 今天,世界上几乎没有人不知道七巧板和七巧图,它在国外被称为“唐图”(Tangram),意思是中国图(不是唐代发明的图)。七巧板的历史也许应该追溯到我国先秦的古籍《周髀算经》,其中有正方形切割术,并由之证明了勾股定理。而当时是将大正方形切割成四个同样的三角形和一个小正方形,即弦图,还不是七巧板。现在的七巧板是经过一段历史演变过程的。 勾股趣事 甚至还有人提出过这样的建议:在地球上建造一个大型装置,以便向可能会来访的“天外来客”表明地球上存在有智慧的生命,最适当的装置就是一个象征勾股定理的巨大图形,可以设在撒哈拉大沙漠、苏联的西伯利亚或其他广阔的荒原上,因为一切有知识的生物都必定知道这个非凡的定理,所以用它来做标志最容易被外来者所识别!? 有趣的是:除了三元二次方程x2 + y2 =z2(其中x、y、z都是未知数)有正整数解以外,其他的三元n次方程xn + yn =zn(n为已知正整数,且n>2)都不可能有正整数解。这一定理叫做费尔马大定理(费尔马是17世纪法国数学家)。2023-01-12 16:28:471
勾股定理的幽默故事
勾股的发现 在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使伽菲尔德循 声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干 什么? 只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道: “如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。 于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。 1881年,伽菲尔德就任美国第二十任总统。后来, 勾股的证明 人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。 勾股定理同时也是数学中应用最广泛的定理之一。例如从勾股定理出发逐渐发展了开平方、开立方;用勾股定理求圆周率。据称金字塔底座的四个直角就是应用这一关系来确定的.至今在建筑工地上,还在用它来放线,进行“归方”,即放“成直角”的线。 正因为这样,人们对这个定理的备加推崇便不足为奇了。1955年希腊发行了一张邮票,图案是由三个棋盘排列而成。这张邮票是纪念二千五百年前希腊的一个学派和宗教团体 —— 毕达哥拉斯学派,它的成立以及在文化上的贡献。邮票上的图案是对勾股定理的说明。希腊邮票上所示的证明方法,最初记载在欧几里得的《几何原本》里。 尼加拉瓜在1971年发行了一套十枚的纪念邮票,主题是世界上“十个最重要的数学公式”,其中之一便是勾股定理。 2002年的世界数学家大会在中国北京举行,这是21世纪数学家的第一次大聚会,这次大会的会标就选定了验证勾股定理的“弦图”作为中央图案,可以说是充分表现了我国古代数学的成就,也充分弘扬了我国古代的数学文化,另外,我国经过努力终于获得了2002年数学家大会的主办权,这也是国际数学界对我国数学发展的充分肯定。 今天,世界上几乎没有人不知道七巧板和七巧图,它在国外被称为“唐图”(Tangram),意思是中国图(不是唐代发明的图)。七巧板的历史也许应该追溯到我国先秦的古籍《周髀算经》,其中有正方形切割术,并由之证明了勾股定理。而当时是将大正方形切割成四个同样的三角形和一个小正方形,即弦图,还不是七巧板。现在的七巧板是经过一段历史演变过程的。 勾股趣事 甚至还有人提出过这样的建议:在地球上建造一个大型装置,以便向可能会来访的“天外来客”表明地球上存在有智慧的生命,最适当的装置就是一个象征勾股定理的巨大图形,可以设在撒哈拉大沙漠、苏联的西伯利亚或其他广阔的荒原上,因为一切有知识的生物都必定知道这个非凡的定理,所以用它来做标志最容易被外来者所识别!? 有趣的是:除了三元二次方程x2 + y2 =z2(其中x、y、z都是未知数)有正整数解以外,其他的三元n次方程xn + yn =zn(n为已知正整数,且n>2)都不可能有正整数解。这一定理叫做费尔马大定理(费尔马是17世纪法国数学家)。 参考资料://wenwen.sogou/z/q657954815 勾股定理也叫毕达哥拉斯定理。 毕达哥拉斯是古希腊著名的哲学家、数学家、天文学家。约公元前580年生于萨摩斯,约公元前500年卒于他林敦。早年曾游历埃及、巴比伦等地。为了摆脱暴政,他移居意大利半岛南部的克罗托内,并组织了一个政治、宗教、数学合一的秘密团体。后在政治斗争中失败,被杀害。 毕达哥拉斯学派很重视数学,企图用数来解释一切。他们研究数学的目的并不在于实用,而是为了探索自然的奥秘。毕达哥拉斯本人以发现勾股定理著称,其实这个定理早为巴比伦人和中国人所知,不过最早的证明应归功毕达哥拉斯。 毕达哥拉斯还是音乐理论的鼻祖,他阐明了单弦的乐音与弦长的关系。在天文方面,首创地圆说。毕达哥拉斯的思想和学说,对希腊文化有巨大的影响。 中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩"得到的一条直角边‘勾"等于3,另一条直角边‘股"等于4的时候,那么它的斜边‘弦"就必定是5。这个原理是大禹在治水的时候就总结出来的呵。” 从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。如图所示,我们 图1 直角三角形 用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得: 勾2+股2=弦2 亦即: a2+b2=c2 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。 在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为: 弦=(勾2+股2)(1/2) 亦即: c=(a2+b2)(1/2) 中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形abde是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子: 4×(ab/2)+(b-a)2=c2 化简后便可得: a2+b2=c2 亦即: c=(a2+b2)(1/2) 图2 勾股圆方图 、【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。 于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 还有中国古代就有勾3股4弦52023-01-12 16:29:081
勾股定理的相关故事 一定要是事实!
勾股定理趣事 学过几何的人都知道勾股定理.它是几何中一个比较重要的定理,应用十分广泛.迄今为止,关于勾股定理的证明方法已有400多种.其中,美国第二十任总统伽菲尔德的证法在数学史上被传为佳话. 总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案是否定的.事情的经过是这样的; 勾股的发现 在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正 在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会地 谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使伽菲尔德循 声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正 俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干 什么? 只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答到:“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味. 于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题.他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法. 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法. 1881年,伽菲尔德就任美国第二十任总统.后来, 勾股的证明 人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法. 勾股定理同时也是数学中应用最广泛的定理之一.例如从勾股定理出发逐渐发展了开平方、开立方;用勾股定理求圆周率.据称金字塔底座的四个直角就是应用这一关系来确定的.至今在建筑工地上,还在用它来放线,进行“归方”,即放“成直角”的线. 正因为这样,人们对这个定理的备加推崇便不足为奇了.1955年希腊发行了一张邮票,图案是由三个棋盘排列而成.这张邮票是纪念二千五百年前希腊的一个学派和宗教团体 —— 毕达哥拉斯学派,它的成立以及在文化上的贡献.邮票上的图案是对勾股定理的说明.希腊邮票上所示的证明方法,最初记载在欧几里得的《几何原本》里. 尼加拉瓜在1971年发行了一套十枚的纪念邮票,主题是世界上“十个最重要的数学公式”,其中之一便是勾股定理. 2002年的世界数学家大会在中国北京举行,这是21世纪数学家的第一次大聚会,这次大会的会标就选定了验证勾股定理的“弦图”作为中央图案,可以说是充分表现了我国古代数学的成就,也充分弘扬了我国古代的数学文化,另外,我国经过努力终于获得了2002年数学家大会的主办权,这也是国际数学界对我国数学发展的充分肯定. 今天,世界上几乎没有人不知道七巧板和七巧图,它在国外被称为“唐图”(Tangram),意思是中国图(不是唐代发明的图).七巧板的历史也许应该追溯到我国先秦的古籍《周髀算经》,其中有正方形切割术,并由之证明了勾股定理.而当时是将大正方形切割成四个同样的三角形和一个小正方形,即弦图,还不是七巧板.现在的七巧板是经过一段历史演变过程的. 勾股趣事 甚至还有人提出过这样的建议:在地球上建造一个大型装置,以便向可能会来访的“天外来客”表明地球上存在有智慧的生命,最适当的装置就是一个象征勾股定理的巨大图形,可以设在撒哈拉大沙漠、苏联的西伯利亚或其他广阔的荒原上,因为一切有知识的生物都必定知道这个非凡的定理,所以用它来做标志最容易被外来者所识别! 有趣的是:除了三元二次方程x2 + y2 =z2(其中x、y、z都是未知数)有正整数解以外,其他的三元n次方程xn + yn =zn(n为已知正整数,且n>2)都不可能有正整数解.这一定理叫做费尔马大定理(费尔马是17世纪法国数学家).2023-01-12 16:29:291
勾股定理的故事
1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。 如下: 解:在网格内,以两个直角边为边长的小正方形面积和,等于以斜边为边长的的正方形面积。 勾股定理的内容:直角三角形两直角边a、b的平方和等于斜边c的平方, a^2+b^2=c^2 说明:我国古代学者把直角三角形的较短直角边称为“勾”,较长直角边为“股”,斜边称为“弦”,所以把这个定理成为“勾股定理”。勾股定理揭示了直角三角形边之间的关系。 举例:如直角三角形的两个直角边分别为3、4,则斜边c^2= a^2+b^2=9+16=25即c=5 则说明斜边为5。2023-01-12 16:29:502
有没有勾股定理的小故事
一天,毕达哥拉斯学派的成员们刚开完一个学术讨论会,正坐着游船出来领略山水风光,以驱散一天的疲劳。这天,风和日丽,海风轻轻的吹,荡起层层波浪,大家心里很高兴。一个满脸胡子的学者看着辽阔的海面兴奋地说:“毕达哥拉斯先生的理论一点都不错。你们看这海浪一层一层,波峰浪谷,就好像奇数、偶数相间一样。世界就是数字的秩序。”“是的,是的。”这时一个正在摇桨的大个子插进来说:“就说这小船和大海吧。用小船去量海水,肯定能得出一个精确的数字。一切事物之间都是可以用数字互相表示的。” “我看不一定。”这时船尾的一个学者突然提问了,他沉静地说:“要是量到最后,不是整数呢?” “那就是小数。”“要是小数既除不尽,又不能循环呢?” “不可能,世界上的一切东西,都可以相互用数字直接准确地表达出来。” 这时,那个学者以一种不想再争辩的口气冷静地说:“并不是世界上一切事物都可以用我们现在知道的数来互相表示,就以毕达哥拉斯先生研究最多的直角三角形来说吧,假如是等腰直角三角形,你就无法用一个直角边准确地量出斜边来。” 这个提问的学者叫希帕索斯(Hippasus),他在毕达哥拉斯学派中是一个聪明、好学、有独立思考能力的青年数学家。今天要不是因为争论,还不想发表自己这个新见解呢。那个摇桨的大个子一听这话就停下手来大叫着:“不可能,先生的理论置之四海皆准。”希帕索斯眨了眨聪明的大眼,伸出两手,用两个虎口比成一个等腰直角三角形说: “如果直边是3,斜边是几?” “4。” “再准确些?” “4.2。” “再准确些?” “4.24。” “再准确些呢?” 大个子的脸涨得绯红,一时答不上来。希帕索斯说:“你就再往后数上10位、20位也不能算是最精确的。我演算了很多次,任何等腰直角三角形的一边与斜边,都不能用一个精确的数字表示出来。”这话像一声晴天霹雳,全船立即响起一阵怒吼:“你敢违背毕达哥拉斯先生的理论,敢破坏我们学派的信条!敢不相信数字就是世界!”希帕索斯这时十分冷静,他说:“我这是个新的发现,就是毕达哥拉斯先生在世也会奖赏我的。你们可以随时去验证。”可是人们不听他的解释,愤怒地喊着:“叛逆!先生的不肖门徒。”“打死他!批死他!”大胡子冲上来,当胸给了他一拳。希帕索斯抗议着:“你们无视科学,你们竟这样无理!”“你所说的不过是一派胡言而已。”这时大个子也冲了过来,猛地将他抱起:“就让我们给你一个最高的奖赏吧!”说着就把希帕索斯扔进了海里。蓝色的海水很快淹没了他的躯体,他再也没有出来。这时,天空飘过几朵白云,海面掠过几只水鸟,一场风波过后,这地中海海滨又显得那样宁静了。 这倒真使人们看清了希帕索斯的思想价值。这次事件后,毕达哥拉斯学派的成员们确实发现不但等腰直角三角形的直角边无法去量准斜边,而且圆的直径也无法去量尽圆周,那个数字是3.14159265……更是永远也无法精确。慢慢地,他们感觉后悔了,后悔杀死希帕索斯的无理行动。他们渐渐明白了,明白了直觉并不是绝对可靠的,有的东西必须靠科学的证明;他们明白了,过去他们所认识的数字“0”,自然数等有理数之外,还有一些无限的不能循环的小数,这确实是一种新发现的数——应该叫它“无理数”。这个名字反映了数学的本来面貌,但也真实的记录了毕达哥拉斯学派中学阀的蛮横无理。2023-01-12 16:30:116
勾股定理的相关故事
勾股定理已有五千多年的历史古代陈子与荣方的对话:求斜至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得斜至日北京召开的2002年国际数学家大会的会标就是"弦图"2023-01-12 16:31:343
勾股定理的历史
1.中国方法 画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a2+b2=c2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法 直接在直角三角形三边上画正方形,如图。 容易看出, △ABA" ≌△AA"" C。 过C向A""B""引垂线,交AB于C",交A""B""于C""。 △ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。 于是, S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD • BA, ① 由△CAD∽△BAC可得AC2=AD • AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。 【附录】 一、【《周髀算经》简介】 《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。 二、【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。 于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。 转引自:http://tw.ntu.edu.cn/education/yanjiu/中“数学的发现”栏目。图无法转贴魅力无比的定理证明 ——勾股定理的证明 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法 画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a2+b2=c2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法 直接在直角三角形三边上画正方形,如图。 容易看出, △ABA" ≌△AA"" C。 过C向A""B""引垂线,交AB于C",交A""B""于C""。 △ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。 于是, S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD • BA, ① 由△CAD∽△BAC可得AC2=AD • AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。 【附录】 一、【《周髀算经》简介】 《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。 二、【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。 于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。 在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500). 实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库. 无论是古埃及人、古巴比伦人还是我们中国人谁最先发现了勾股定理,我们的先人在不同的时期、不同的地点发现的这同一性质,显然不仅仅是哪一个民族的私有财产而是我们全人类的共同财富.值得一提的是:在发现这一共同性质后的收获却是不完全相同的.下面以“毕达哥拉斯定理”和“勾股定理”为例,做一简单介绍: 一、毕达哥拉斯定理 毕达哥拉斯是一个古希腊人的名字.生于公元前6世纪的毕达哥拉斯,早年曾游历埃及、巴比伦(另一种说法是到过印度)等地,后来移居意大利半岛南部的克罗托内,并在那里组织了一个集政治、宗教、数学于一体的秘密团体毕达哥拉斯学派,这个学派非常重视数学,企图用数来解释一切.他们宣称,数是宇宙万物的本原,研究数学的目的并不在于实用,而是为了探索自然的奥秘.他们对数学看法的一个重大贡献是有意识地承认并强调:数学上的东西如数和图形是思维的抽象,同实际事物或实际形象是截然不同的.有些原始文明社会中的人(如埃及人和巴比伦人)也知道把数脱离实物来思考,但他们对这种思考的抽象性质所达到的自觉认识程度,与毕达哥拉斯学派相比,是有相当差距的.而且在希腊人之前,几何思想是离不开实物的.例如,埃及人认为,直线就是拉紧的绳或田地的一条边;而矩形则是田地的边界.毕达哥拉斯学派还有一个特点,就是将算术和几何紧密联系起来. 正因为如此,毕达哥拉斯学派在他们的探索中,发现了既属于算术又属于几何的用三个整数表示直角三角形边长的公式:若2n+1,2n2+2n分别是两直角边,则斜边是2n2+2n+1(不过这法则并不能把所有的整勾股数组表示出来).也正是由于上述原因,这个学派通过对整勾股数的寻找和研究,发现了所谓的“不可通约量”例如,等腰直角三角形斜边与一直角边之比即正方形对角线与其一边之比不能用整数之比表达.为此,他们把那些能用整数之比表达的比称做“可公度比”,意即相比两量可用公共度量单位量尽,而把不能这样表达的比称做“不可公度比”.像我们今日写成:1的比便是不可公度比.至于与1不能公度的证明也是毕达哥拉斯学派给出的.这个证明指出:若设等腰直角三角形斜边能与一直角边公度,那么,同一个数将既是奇数又是偶数.证明过程如下:设等腰直角三角形斜边与一直角边之比为:,并设这个比已表达成最小整数之比.根据毕达哥拉斯定理2=2+2,有2=22.由于22为偶数即x2为偶数,所以必然也是偶数,因为任一奇数的平方必是奇数(任一奇数可表示为2n+1,于是(2n+1)2=4n2+4n+1,这仍是一个奇数.但是比:是既约的,因此,必然不是偶数而是奇数,既然是偶数,故可设=2.于是2=42=22.因此,2=22,这样,2是个偶数,于是也是偶数,但是同时又是个奇数,这就产生了矛盾. 关于对毕达哥拉斯定理的证明,现在人类保存下来的最早的文字资料是欧几里得(公元前300年左右)所著的《几何原本》第一卷中的命题47:“直角三角形斜边上的正方形等于两直角边上的两个正方形之和”.实际上,毕达哥拉斯学派关心得更多的是数学问题本身的研究;以毕达哥拉斯学派为代表的古希腊数学是以空间形式为主要研究对象,以逻辑上的演绎推理为主要的理论形式.而毕达哥拉斯定理的发现(关于可公度比与不可公度比的研究、讨论),实际上导致了无理数的发现,尽管毕达哥拉斯学派不愿意接受这样的数,并因此造成了数学史上所谓的第一次数学危机,但是毕达哥拉斯学派的探索仍然是功不可没的. 二、我国的勾股定理 在我国,至今可查的有关勾股定理的最早记载,是大约公元前1世纪前后成书的《周髀算经》,其中有一段公元前1千多年前的对话:“昔者周公问于商高曰:窃闻乎大夫善数也,请问古者包牺立周天历度,夫天不可阶而升,地不可得尺寸而度.请问数安从出?商高曰:数之法,出于圆方.圆出于方,方出于矩,矩出于九九八十一.故折矩,以为勾广三,股修四,径隅五.” 《周髀算经》中还有“陈子测日”的记载:根据勾股定理,周子可以测出日高及日远.例如,当求得了日高及测得了测量人所在位置到日下点的距离之后,计算日远的方法是:“若求邪至日者,以日下为勾,日高为股,勾股自乘,并开方而除之,得邪至日者.” 《周髀算经》是我国流传至今的一部最早的数学著作.书中主要讲述了学习数学的方法以及用勾股定理来计算高深远近和比较复杂的分数计算等.在唐代,《周髀算经》与其他九部陆续出现在我国汉唐两代千余年间的数学著作一起,被国子监算学馆定为课本,后世通称这十本书为《算经十书》.《算经十书》较全面地反映了自先秦至唐初我国的数学成就.其中许多书中都涉及到了勾股定理的内容,尤其《九章算术》(《算经十书》之一)第九章“勾股”专门讲解有关直角三角形的理论,所讨论的主要内容就是勾股定理及其应用.该章共有设问24题,提出22术.其中第6题是有名的“引葭赴岸”:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.”这是一个流传甚广的题目,类似题目一再在其他书中出现,例如成书于5世纪中叶的《张邱建算经》(《算经十书》之一)、朱世杰所著的《四元玉鉴》(1303年)等. 我们的先辈们还根据勾股定理发明了一种由互相垂直的勾尺和股尺构成的测量工具矩.如,《周髀算经》中记载了商高对用矩之道的论述:“平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远.”又如,我国魏晋间杰出的数学家刘徽在他的名著《海岛算经》(《算经十书》之一)中共列出了9个有代表性的可用矩解决的测望问题,其中第4个问题是:“今有望深谷,偃矩岸上,令勾高六尺,从勾端望谷底,入下股九尺一寸,又设重矩于上,其矩间相去三丈,更从勾端望谷底,入上股八尺五寸,问谷深几何.” 我国最早的关于勾股定理的证明,目前人们认为是汉代赵爽对《周髀算经》的注释. 我国古代的数学与古希腊的数学不大一样.实际上,我国数学的主要研究对象不是空间形式,而是数量关系;其理论形式不是逻辑演绎体系,而是以题解为中心的算法体系.与古希腊数学采取层层论证的思维方式不同,我国古代数学家的思维方式是以直觉思维为主,又以类比为发现和推论结果的主要手段. 对于勾股定理,我国古代的数学家没有把主要精力放在仅仅给出严格的逻辑推理证明上,也没有在不可通约量究竟是什么性质的数上面做文章,而是立足于对由此可以解决的一类实际问题算法的深入研究.通过在直角三角形范围内讨论与勾股定理、相似直角三角形性质定理有关的命题,他们推出了一种组合比率算法勾股术.勾股术把相似直角三角形的概念作为基本概念,把相似直角三角形的性质作为基本性质,使相似直角三角形之间的相似比率构成了勾股的核心.勾股术用比率表达相似勾股对应边成比例的原理,勾股整数和勾股两容(容圆、容方)问题的求解;建立了勾股测量的理论基础.后来,刘徽实际上把相似勾股形理论确定为勾股比率论,并明确提出了“不失本率原理”,又把这个原理与比例算法结合起来,去论证各种各样的勾股测量原理,从而为我国古代的勾股测望术建立了坚实的理论基础. 有的专家还提出:勾股定理在我国古代数学中占有十分重要的地位,千百年来逐渐形成了一门以勾股定理及其应用为核心的中国式的几何学.2023-01-12 16:31:553
勾股定理的由来是什么?
来源见下面:在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。2023-01-12 16:32:384
勾股定理的历史
远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。公元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。公元前4世纪,希腊数学家欧几里得在《几何原本》(第Ⅰ卷,命题47)中给出一个证明。1876年4月1日,加菲尔德在《新英格兰教育日志》上发表了他对勾股定理的一个证法。1940年《毕达哥拉斯命题》出版,收集了367种不同的证法。扩展资料:勾股定理的历史意义勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。参考资料来源:百度百科-勾股定理2023-01-12 16:33:199
勾股定理的历史与证明方法?
1.中国方法 画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a2+b2=c2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法 直接在直角三角形三边上画正方形,如图。 容易看出, △ABA" ≌△AA"" C。 过C向A""B""引垂线,交AB于C",交A""B""于C""。 △ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。 于是, S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD �6�1 BA, ① 由△CAD∽△BAC可得AC2=AD �6�1 AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。 【附录】 一、【《周髀算经》简介】 《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。 二、【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。2023-01-12 16:34:213
勾股定理的历史
人们对勾股定理的认识经历了从特殊到一般的过程,这在世界许多地区的数学原始文献中都有反映.最早发现”勾三股四弦五”这一特殊关系的是古埃及人,这一事实可以追溯到公元前25世纪,中国古代数学家也较早独立发现并证明过勾股定理,而对它的应用更有许多独到之处.勾股定理一般情况的发现和证明,那要归功于古希腊的毕达哥拉斯. 中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩"(即直角)的一条直角边‘勾"等于3,另一条直角边‘股"等于4的时候,那么它的斜边‘弦"就必定是5。这个原理是大禹在治水的时候就总结出来的呵。” 从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要数学原理了。稍懂平面几何的读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。在稍后一点的《九章算术》一书中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:弦=(勾2+股2)(1/2) 亦即:c=(a2+b2)(1/2) 满足勾股定理的数组称为勾股数(或商高数)。在西方,人们把这个定理的发现与证明归功于古希腊的毕达哥拉斯,因而称之为毕达哥拉斯定理,满足定理的数组也就称为毕达哥拉斯数。但是1945年,人们在对古巴比伦人遗留下的一块数学泥板的研究中,惊讶地发现上面竟然刻有15组勾股数,其年代远在商高和毕达哥拉斯之前,大约在公元前1900年到公元前l600年之间。这些勾股数组中有些是很大的数,即使在今天也往往是人们所不熟悉的。这个数表使人们有理由相信,古巴比伦人早已掌握了勾股定 勾股的证明 理并很可能找到了一种求得勾股数的一般方法,只不过人们还不能从其他的泥板中找出更多的证据来证明这一点。 勾股趣事 毕达哥拉斯学派倒是明确地给出了勾股数的一组公式:一组勾股数的正整数解:a=2n+1,b=2n2+2n,c=2n2+2n+1,其特点是斜边与其中一股的差为1。 后来,另一个古希腊学者柏拉图(Plato,约前427-前347)也给了另一组公式:a=2n,b=n2-1,c=n2+1,此时斜边与其中一股之差为2。 被誉为“代数学鼻祖”的古希腊数学家丢番图(Diophantus,约330-246)也在研究二次不定方程的时候,对勾股数作了一番探讨。他发现不论是毕达哥拉斯还是柏拉图的式子,都没能给出全部勾股数组,于是他找到了一个新方法:全部解的公式是a=2mn,y=m2-n2,z=m2+n2其中m,n(m>n)是互质且一奇一偶的任意正整数。 丢番图究竟是如何得到这组式子的,人们今天已经无从知晓。重要的是,这组式子包含了全部的勾股数组! 值得一提的是,在早于丢氏三、四百年的我国古代数学巨著《九章算术》中,也提出了一组求勾股数的式子,这组式子相当于:任意给定两个正整数m,n(m>n),那么这三个正整数就是一个整勾股数组。用代数方法很容易证明这一结论。公元3世纪,我国著名数学家刘徽从几何上也证明了这一结论。 不难证明,如果上述m,n(m>n),是互质的奇数,那么用《九章算术》中的法则可以求出所有两两互质的整勾股数组。这也是我们中国古代数学家的一项杰出成就。 无论是古埃及人、古巴比伦人还是我们中国人谁最先发现了勾股定理,我们的先人在不同的时期、不同的地点发现的这同一性质,显然不仅仅是哪一个民族的私有财产而是我们全人类的共同财富.2023-01-12 16:35:234
探索勾股定理的多种证明方法!
勾股定理的证明 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法 画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a2+b2=c2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法 直接在直角三角形三边上画正方形,如图。 容易看出, △ABA" ≌△AA"" C。 过C向A""B""引垂线,交AB于C",交A""B""于C""。 △ABA"与正方形ACDA"同底等高,前者面积为后者面积的一半,△AA""C与矩形AA""C""C"同底等高,前者的面积也是后者的一半。由△ABA"≌△AA""C,知正方形ACDA"的面积等于矩形AA""C""C"的面积。同理可得正方形BB"EC的面积等于矩形B""BC"C""的面积。 于是, S正方形AA""B""B=S正方形ACDA"+S正方形BB"EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD • BA, ① 由△CAD∽△BAC可得AC2=AD • AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。 【附录】 一、【《周髀算经》简介】 《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。 《周髀算经》使用了相当繁复的分数算法和开平方法。 二、【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。 于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD • BA, ① 由△CAD∽△BAC可得AC2=AD • AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 如此等等。 参考资料:http://zhidao.baidu.com/question/5159445.html 回答者:xiaoxiaotim - 首席运营官 十二级 3-28 18:24 勾股定理的证明 罗洪信 (2002年4月25日参加桂林市创新教育课堂教学大比武用) 【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 , 整理得 . 【证法2】(邹元治证明) 以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角形的面积等于 . 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵ RtΔHAE ≌ RtΔEBF, ∴ ∠AHE = ∠BEF. ∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º. ∴ 四边形EFGH是一个边长为c的 正方形. 它的面积等于c2. ∵ RtΔGDH ≌ RtΔHAE, ∴ ∠HGD = ∠EHA. ∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º, ∴ ∠DHA = 90º+ 90º= 180º. ∴ ABCD是一个边长为a + b的正方形,它的面积等于 . ∴ . ∴ . 【证法3】(赵爽证明) 以a、b 为直角边(b>a), 以c为斜 边作四个全等的直角三角形,则每个直角 三角形的面积等于 . 把这四个直角三 角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴ ∠HDA = ∠EAB. ∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º, ∴ ABCD是一个边长为c的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a , ∠HEF = 90º. ∴ EFGH是一个边长为b―a的正方形,它的面积等于 . ∴ . ∴ . 【证法4】(1876年美国总统Garfield证明) 以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于 . 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上. ∵ RtΔEAD ≌ RtΔCBE, ∴ ∠ADE = ∠BEC. ∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º. ∴ ∠DEC = 180º―90º= 90º. ∴ ΔDEC是一个等腰直角三角形, 它的面积等于 . 又∵ ∠DAE = 90º, ∠EBC = 90º, ∴ AD‖BC. ∴ ABCD是一个直角梯形,它的面积等于 . ∴ . ∴ . 【证法5】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF = 90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形. ∴ ∠ABC + ∠CBE = 90º. ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º. 又∵ ∠BDE = 90º,∠BCP = 90º, BC = BD = a. ∴ BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 , ∴ . 【证法6】(项明达证明) 做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a) ,斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP‖BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点 F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90º,QP‖BC, ∴ ∠MPC = 90º, ∵ BM⊥PQ, ∴ ∠BMP = 90º, ∴ BCPM是一个矩形,即∠MBC = 90º. ∵ ∠QBM + ∠MBA = ∠QBA = 90º, ∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC, 又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF. 从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明) 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结 BF、CD. 过C作CL⊥DE, 交AB于点M,交DE于点 L. ∵ AF = AC,AB = AD, ∠FAB = ∠GAD, ∴ ΔFAB ≌ ΔGAD, ∵ ΔFAB的面积等于 , ΔGAD的面积等于矩形ADLM 的面积的一半, ∴ 矩形ADLM的面积 = . 同理可证,矩形MLEB的面积 = . ∵ 正方形ADEB的面积 = 矩形ADLM的面积 + 矩形MLEB的面积 ∴ ,即 . 【证法8】(利用相似三角形性质证明) 如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D. 在ΔADC和ΔACB中, ∵ ∠ADC = ∠ACB = 90º, ∠CAD = ∠BAC, ∴ ΔADC ∽ ΔACB. AD∶AC = AC ∶AB, 即 . 同理可证,ΔCDB ∽ ΔACB,从而有 . ∴ ,即 . 【证法9】(杨作玫证明) 做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形. 过A作AF⊥AC,AF交GT于F,AF交DT于R. 过B作BP⊥AF,垂足为P. 过D作DE与CB的延长线垂直,垂足为E,DE交AF于H. ∵ ∠BAD = 90º,∠PAC = 90º, ∴ ∠DAH = ∠BAC. 又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c, ∴ RtΔDHA ≌ RtΔBCA. ∴ DH = BC = a,AH = AC = b. 由作法可知, PBCA 是一个矩形, 所以 RtΔAPB ≌ RtΔBCA. 即PB = CA = b,AP= a,从而PH = b―a. ∵ RtΔDGT ≌ RtΔBCA , RtΔDHA ≌ RtΔBCA. ∴ RtΔDGT ≌ RtΔDHA . ∴ DH = DG = a,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º, ∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH是一个边长为a的正方形. ∴ GF = FH = a . TF⊥AF,TF = GT―GF = b―a . ∴ TFPB是一个直角梯形,上底TF=b―a,下底BP= b,高FP=a +(b―a). 用数字表示面积的编号(如图),则以c为边长的正方形的面积为 ① ∵ = , , ∴ = . ② 把②代入①,得 = = . ∴ . 【证法10】(李锐证明) 设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上. 用数字表示面积的编号(如图). ∵ ∠ TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE. 又∵ ∠BTH = ∠BEA = 90º, BT = BE = b, ∴ RtΔHBT ≌ RtΔABE. ∴ HT = AE = a. ∴ GH = GT―HT = b―a. 又∵ ∠GHF + ∠BHT = 90º, ∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º, ∴ ∠GHF = ∠DBC. ∵ DB = EB―ED = b―a, ∠HGF = ∠BDC = 90º, ∴ RtΔHGF ≌ RtΔBDC. 即 . 过Q作QM⊥AG,垂足是M. 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM,而AB = AQ = c,所以RtΔABE ≌ RtΔQAM . 又RtΔHBT ≌ RtΔABE. 所以RtΔHBT ≌ RtΔQAM . 即 . 由RtΔABE ≌ RtΔQAM,又得QM = AE = a,∠AQM = ∠BAE. ∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE, ∴ ∠FQM = ∠CAR. 又∵ ∠QMF = ∠ARC = 90º,QM = AR = a, ∴ RtΔQMF ≌ RtΔARC. 即 . ∵ , , , 又∵ , , , ∴ = = , 即 . 【证法11】(利用切割线定理证明) 在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 如图,以B为圆心a为半径作圆,交AB及AB的延长线分别于D、E,则BD = BE = BC = a. 因为∠BCA = 90º,点C在⊙B上,所以AC是⊙B 的切线. 由切割线定理,得 = = = , 即 , ∴ . 【证法12】(利用多列米定理证明) 在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c(如图). 过点A作AD‖CB,过点B作BD‖CA,则ACBD为矩形,矩形ACBD内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有 , ∵ AB = DC = c,AD = BC = a, AC = BD = b, ∴ ,即 , ∴ . 【证法13】(作直角三角形的内切圆证明) 在RtΔABC中,设直角边BC = a,AC = b,斜边AB = c. 作RtΔABC的内切圆⊙O,切点分别为D、E、F(如图),设⊙O的半径为r. ∵ AE = AF,BF = BD,CD = CE, ∴ = = r + r = 2r, 即 , ∴ . ∴ , 即 , ∵ , ∴ , 又∵ = = = = , ∴ , ∴ , ∴ , ∴ . 【证法14】(利用反证法证明) 如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D. 假设 ,即假设 ,则由 = = 可知 ,或者 . 即 AD:AC≠AC:AB,或者 BD:BC≠BC:AB. 在ΔADC和ΔACB中, ∵ ∠A = ∠A, ∴ 若 AD:AC≠AC:AB,则 ∠ADC≠∠ACB. 在ΔCDB和ΔACB中, ∵ ∠B = ∠B, ∴ 若BD:BC≠BC:AB,则 ∠CDB≠∠ACB. 又∵ ∠ACB = 90º, ∴ ∠ADC≠90º,∠CDB≠90º. 这与作法CD⊥AB矛盾. 所以, 的假设不能成立. ∴ . 【证法15】(辛卜松证明) 设直角三角形两直角边的长分别为a、b,斜边的长为c. 作边长是a+b的正方形ABCD. 把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD的面积为 ;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD的面积为 = . ∴ , ∴ . 【证法16】(陈杰证明) 设直角三角形两直角边的长分别为a、b(b>a),斜边的长为c. 做两个边长分别为a、b的正方形(b>a),把它们拼成如图所示形状,使E、H、M三点在一条直线上. 用数字表示面积的编号(如图). 在EH = b上截取ED = a,连结DA、DC, 则 AD = c. ∵ EM = EH + HM = b + a , ED = a, ∴ DM = EM―ED = ―a = b. 又∵ ∠CMD = 90º,CM = a, ∠AED = 90º, AE = b, ∴ RtΔAED ≌ RtΔDMC. ∴ ∠EAD = ∠MDC,DC = AD = c. ∵ ∠ADE + ∠ADC+ ∠MDC =180º, ∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º. ∴ 作AB‖DC,CB‖DA,则ABCD是一个边长为c的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE. 连结FB,在ΔABF和ΔADE中, ∵ AB =AD = c,AE = AF = b,∠BAF=∠DAE, ∴ ΔABF ≌ ΔADE. ∴ ∠AFB = ∠AED = 90º,BF = DE = a. ∴ 点B、F、G、H在一条直线上. 在RtΔABF和RtΔBCG中, ∵ AB = BC = c,BF = CG = a, ∴ RtΔABF ≌ RtΔBCG. ∵ , , , , ∴ = = = ∴ . 参考资料:http://www.glshf.com/kzwy/sxz/lunwenzs/lhx1.htm.2023-01-12 16:35:442