楚小云 / 小云问答 / 问答详情

数学中标准差是什么意思

2023-09-01 14:07:36
TAG: 标准
gitcloud

标准差(Standard Deviation) ,中文环境中又常称均方差,但不同于均方误差(mean squared error,均方误差是各数据偏离真实值的距离平方和的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组组数据,标准差未必相同。

里论外几

标准差(Standard Deviation)

各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数

标准差是方差的算术平方根。

标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。

例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。

标准差也被称为标准偏差,或者实验标准差。

可桃可挑

  1. 标准差(Standard Deviation) ,中文环境中又常称均方差,但不同于均方误差,标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。

  2. 从几何学的角度出发,标准差可以理解为一个从 n 维空间的一个点到一条直线的距离的函数。

  3. 在真实世界中,除非在某些特殊情况下,不然找到一个总体的真实的标准差是不现实的。大多数情况下,总体标准差是通过随机抽取一定量的样本并计算样本标准差估计的。

nicejikv

标准差是方差的2次方根

方差是各个数据减去平均数的平方的和

比如说1 2 3 4 5 ,平均数是3

方差是:(1-3)^2+(2-3)^2+(3-3)^2+(4-3)^2+(5-3)^2=10

标准差就是√10

方差、标准差越大说明各个数据的差距越大

1、2、3、4、5的方差和标准差就要大于2、2、3、4、4的

按照这题的尿性一定要你答[二班的成绩比一班稳定]

大牌网络

标准差(Standard Deviation),在概率统计中最常使用作为统计分布程度(statistical dispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。

什么是标准差

相关推荐

标准差是什么意思?

标准差也被称为标准偏差,或者实验标准差。简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。一般来说标准差较小为好,这样代表比较稳定。扩展资料:标准差是在概率统计中最常使用作为统计分布程度上的测量。标准差定义为方差的算术平方根,反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。标准差也称均方差,是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。标准差可以反映平均数不能反映出的东西(比如稳定度等)。标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。参考资料:百度百科-标准差
2023-09-01 01:54:471

标准差是什么意思?

  标准差  标准差也被称为标准偏差,或者实验标准差,标准差(Standard Deviation)描述各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度,标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。平均数相同的两个数据集,标准差未必相同。
2023-09-01 01:55:031

标准差是什么?

是标准差(Standard Deviation) ,中文环境中又常称均方差,是离均差平方的算术平均数的平方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。公式:1、如是总体(即估算总体方差),根号内除以n(对应excel函数:STDEVP);2、如是抽样(即估算样本方差),根号内除以(n-1)(对应excel函数:STDEV);3、因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)。扩展资料:标准差和离散度关系:标准差是反映一组数据离散程度最常用的一种量化形式,是表示精确度的重要指标。说起标准差首先得搞清楚它出现的目的。我们使用方法去检测它,但检测方法总是有误差的,所以检测值并不是其真实值。检测值与真实值之间的差距就是评价检测方法最有决定性的指标。但是真实值是多少,不得而知。因此怎样量化检测方法的准确性就成了难题。这也是临床工作质控的目的:保证每批实验结果的准确可靠。虽然样本的真实值是不可能知道的,但是每个样本总是会有一个真实值的,不管它究竟是多少。可以想象,一个好的检测方法,其检测值应该很紧密的分散在真实值周围。如果不紧密,与真实值的距离就会大,准确性当然也就不好了,不可能想象离散度大的方法,会测出准确的结果。因此,离散度是评价方法的好坏的最重要也是最基本的指标。一组数据怎样去评价和量化它的离散度,有很多种方法:极差最直接也是最简单的方法,即最大值-最小值(也就是极差)来评价一组数据的离散度。这一方法在日常生活中最为常见,比如比赛中去掉最高最低分就是极差的具体应用。离均差平方和由于误差的不可控性,因此只由两个数据来评判一组数据是不科学的。所以人们在要求更高的领域不使用极差来评判。其实,离散度就是数据偏离平均值的程度。因此将数据与均值之差(我们叫它离均差)加起来就能反映出一个准确的离散程度。和越大离散度也就越大。但是由于偶然误差是成正态分布的,离均差有正有负,对于大样本离均差的代数和为零的。为了避免正负问题,在数学有上有两种方法:一种是取绝对值,也就是常说的离均差绝对值之和。而为了避免符号问题,数学上最常用的是另一种方法--平方,这样就都成了非负数。因此,离均差的平方和成了评价离散度一个指标。方差由于离均差的平方和与样本个数有关,只能反映相同样本的离散度,而实际工作中做比较很难做到相同的样本,因此为了消除样本个数的影响,增加可比性,将离均差的平方和求平均值,这就是我们所说的方差成了评价离散度的较好指标。样本量越大越能反映真实的情况,而算术平均值却完全忽略了这个问题,对此统计学上早有考虑,在统计学中样本的均差多是除以自由度(n-1),它的意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n-1。标准差意义由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差。在统计学中样本的均差多是除以自由度(n-1),它是意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n-1。变异系数标准差能很客观准确的反映一组数据的离散程度,但是对于不同的项目,或同一项目不同的样本,标准差就缺乏可比性了,因此对于方法学评价来说又引入了变异系数CV。一组数据的平均值及标准差常常同时做为参考的依据。在直觉上,如果数值的中心以平均值来考虑,则标准差为统计分布之一“自然”的测量。参考资料来源:百度百科--概率参考资料来源:百度百科--标准差
2023-09-01 01:55:331

什么是标准差呢?

标准差也被称为标准偏差,或者实验标准差。简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大。一个较小的标准差,代表这些数值较接近平均值。一般来说标准差较小为好,这样代表比较稳定。标准差也被称为标准偏差,或者实验标准差,公式如下所示:标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n)。简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大。一个较小的标准差,代表这些数值较接近平均值。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。
2023-09-01 01:55:471

标准差是什么意思

标准差:是总体各单位标志值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。方差s^2=[(x1-x)^2+(x2-x)^2+......(xn-x)^2]/(n) (x为平均数)。标准差公式是一种数学公式。标准差也被称为标准偏差,或者实验标准差,公式如下所示:标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n)。扩展资料:标准差是反映一组数据离散程度最常用的一种量化形式,是表示精确度的重要指标。说起标准差首先得搞清楚它出现的目的。我们使用方法去检测它,但检测方法总是有误差的,所以检测值并不是其真实值。检测值与真实值之间的差距就是评价检测方法最有决定性的指标。但是真实值是多少,不得而知。因此怎样量化检测方法的准确性就成了难题。这也是临床工作质控的目的:保证每批实验结果的准确可靠。虽然样本的真实值是不可能知道的,但是每个样本总是会有一个真实值的,不管它究竟是多少。可以想象,一个好的检测方法,其检测值应该很紧密的分散在真实值周围。如果不紧密,与真实值的距离就会大,准确性当然也就不好了,不可能想象离散度大的方法,会测出准确的结果。因此,离散度是评价方法的好坏的最重要也是最基本的指标。参考资料来源:百度百科-标准差
2023-09-01 01:56:1110

标准差是什么?

方差是各个数据与平均数之差的平方的和的平均数,公式为:标准差:标准差=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n)。是离均差平方的算术平均数的平方根,用σ表示。在概率统计中最常使用作为统计分布程度上的测量。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。扩展资料:简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。虽然样本的真实值是不可能知道的,但是每个样本总是会有一个真实值的,不管它究竟是多少。可以想象,一个好的检测方法,其检测值应该很紧密的分散在真实值周围。如果不紧密,与真实值的距离就会大,准确性当然也就不好了,不可能想象离散度大的方法,会测出准确的结果。因此,离散度是评价方法的好坏的最重要也是最基本的指标。
2023-09-01 01:57:051

标准差指的是什么?

标准差指的是:标准差,是离均差平方的算术平均数的算术平方根,用σ表示。标准差也被称为标准偏差,或者实验标准差,在概率统计中最常使用作为统计分布程度上的测量依据。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。标准差的应用:标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远,则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。
2023-09-01 01:57:401

标准差是什么?

标准差 ,是离均差平方的算术平均数(即:方差)的算术平方根,用σ表示。公式如下所示:样本标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/(n-1))总体标准差=σ=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n )标准差的性质和应用标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:为非负数值,与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
2023-09-01 01:58:061

标准差是什么意思?

方差是各个数据与平均数之差的平方的和的平均数,公式为:标准差:标准差=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n)。是离均差平方的算术平均数的平方根,用σ表示。在概率统计中最常使用作为统计分布程度上的测量。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。扩展资料:简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。虽然样本的真实值是不可能知道的,但是每个样本总是会有一个真实值的,不管它究竟是多少。可以想象,一个好的检测方法,其检测值应该很紧密的分散在真实值周围。如果不紧密,与真实值的距离就会大,准确性当然也就不好了,不可能想象离散度大的方法,会测出准确的结果。因此,离散度是评价方法的好坏的最重要也是最基本的指标。
2023-09-01 01:58:221

什么是标准差

标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。数学上一般用E{[X-E(X)]^2}来度量随机变量X与其均值E(X)的偏离程度,称为X的方差。
2023-09-01 01:58:5110

标准差是什么意思?

标准差(Standard Deviation),在概率统计中最常使用作为统计分布程度(statistical dispersion)上的测量。标准差定义为方差的算术平方根,反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。其公式如下所列。标准差的观念是由卡尔·皮尔逊(Karl Pearson)引入到统计中。第一步,计算平均值(A1+A2+……+An)/n在这里,5, 6, 8, 9的平均值为(5+6+8+9)/4=7第二步,计算标准差标准差σ=√0.25*{(5-7)*(5-7)+(6-7)*(6-7)+(8-7)*(8-7)+(9-7)*(9-7)}=√10/√4=1.58扩展资料测量到分布程度的结果,原则上具有两种性质:为非负数值, 与测量资料具有相同单位。 一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。标准计算公式假设有一组数值X1,X2,X3,......Xn(皆为实数),其平均值为μ。平均值标准差也被称为标准偏差,或者实验标准差。简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。例如,两组数的集合 {0, 5, 9, 14} 和 {5, 6, 8, 9} 其平均值都是 7 ,但第二个集合具有较小的标准差。标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越细,代表回报较为稳定,风险亦较小。例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.078分,B组的标准差为2.16分(此数据是在R统计软件中运行获得),说明A组学生之间的差距要比B组学生之间的差距大得多。参考资料:标准差的百度百科
2023-09-01 01:59:181

什么是标准差,有什么含义?

标准差(Standard Deviation),在概率统计中最常使用作为统计分布程度(statistical dispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:为非负数值, 与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。标准计算公式:假设有一组数值Xu2081,Xu2082,Xu2083,......Xn(皆为实数),其平均值(算术平均值)为μ,公式如图1。标准差也被称为标准偏差,或者实验标准差,公式为  简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。例如,两组数的集合 {0,5,9,14} 和 {5,6,8,9} 其平均值都是 7 ,但第二个集合具有较小的标准差。标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差约为17.08分,B组的标准差约为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。如是总体(即估算总体方差),根号内除以n(对应excel函数:STDEVP);如是抽样(即估算样本方差),根号内除以(n-1)(对应excel函数:STDEV);因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)。公式意义正态分布图所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。深蓝区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之 68%。对于正态分布,两个标准差之内(深蓝,蓝)的比率合起来为 95%。对于正态分布,正负三个标准差之内(深蓝,蓝,浅蓝)的比率合起来为 99%。
2023-09-01 01:59:431

标准差表示什么?

标准差(Standard Deviation) ,中文环境中又常称均方差,但不同于均方误差(mean squared error,均方误差是各数据偏离真实值的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。
2023-09-01 01:59:585

什么是标准差,有什么意义?

http://www.ahscyz.net.cn/wsfw/kxg/shengwu/web1/res/seniorbio/consult/001/0114.htm标准差(standarddeviation)样本内各变数变异程度的度量。由样本计算标准差的公式为:为求和符号。从上可知标准差是反映样本内各个变数与平均数差异大小的一个统计参数。从S可了解样本内各变数的变异程度及样本平均数代表性的可反之亦然。此外,在生物统计中,还用样本标准差来估计总体标准差。在实践中通常用下式计算样本标准差S。举例:调查某小组18名学生的身高(cm),其数据为:173,165,154,180,175,170,166,162,158,169,160,174,179,177,168,157,160,163。经计算得∑x=3010,∑x2=504408,数的次数分布作出估计,如观察数据属常态分布(正态分布),于是有:在的范围内;变数的个数约有95.46%落在x±2S的范围内;变数的个数约有167.2222±7.9303(159.2919~175.1525)厘米的范围内;约有95%的学生身高在167.2222±2×7.9303(151.3616~183.0828)厘米的范围差是分析数量性状最常用的两个参数。
2023-09-01 02:00:461

什么是标准差?什么是方差?它们与误差的异同点?

标准差,也称均方差是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。标准差越高,表示实验数据越离散,也就是说越不精确反之,标准差越低,代表实验的数据越精确。方差:是各个数据与平均数之差的平方的平均数,即s^2=1/n[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]通俗点讲,就是和中心偏离的程度!用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)。在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。误差:测量结果与被测量真值之差。标准差和方差是数学概念,误差是物理概念。
2023-09-01 02:01:062

标准差是什么意思

标准差也被称为标准偏差,或者实验标准差。简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 一般来说标准差较小为好,这样代表比较稳定。标准差也被称为标准偏差,或者实验标准差,公式如下所示:标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n)。简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。
2023-09-01 02:01:151

标准差是什么?偏差是什么?

标准差是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。偏差是样本值与平均值的差额,就是样本中某一个减去平均值之后得出的值。
2023-09-01 02:01:241

标准误和标准差是什么意思

标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方误差.标准偏差反映的是个体观察值的变异,标准误反映的是样本均数之间的变异(即样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度),标准误不是标准差.标准误用来衡量抽样误差.标准误越小,表明样本统计量与总体参数的值越接近,样本对总体越有代表性,用样本统计量推断总体参数的可靠度越大.因此,标准误是统计推断可靠性的指标.在相同测量条件下进行的测量称为等精度测量,例如在同样的条件下,用同一个游标卡尺测量铜棒的直径若干次,这就是等精度测量.对于等精度测量来说,还有一种更好的表示误差的方法,就是标准误差.标准差是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,标准差能反映一个数据集的离散程度.标准差与标准误都是心理统计学的内容,两者不但在字面上比较相近,而且两者都是表示距离某一个标准值或中间值的离散程度,即都表示变异程度,但是两者是有着较大的区别的.首先要从统计抽样的方面说起.现实生活或者调查研究中,我们常常无法对某类欲进行调查的目标群体的所有成员都加以施测,而只能够在所有成员(即样本)中抽取一些成员出来进行调查,然后利用统计原理和方法对所得数据进行分析,分析出来的数据结果就是样本的结果,然后用样本结果推断总体的情况.一个总体可以抽取出多个样本,所抽取的样本越多,其样本均值就越接近总体数据的平均值.标准差(standard deviation, STD)表示的就是样本数据的离散程度.标准差就是样本平均数方差的开平方,标准差通常是相对于样本数据的平均值而定的,通常用M±SD来表示,表示样本某个数据观察值相距平均值有多远.从这里可以看到,标准差收到极值的影响.标准差越小,表明数据越聚集;标准差越大,表明数据越离散.标准差的大小因测验而定,如果一个测验是学术测验,标准差大,表示学生分数的离散程度大,更能够测量出学生的学业水平;如果一个侧样测量的是某种心理品质,标准差小,表明所编写的题目是同质的,这时候的标准差小的更好.标准差与正态分布有密切联系:在正态分布中,1个标准差等于正态分布下曲线的68.26%的面积,1.96个标准差等于95%的面积.这在测验分数等值上有重要作用.标准误(standard error, SE)表示的是抽样的误差.因为从一个总体中可以抽取出无多个样本,每一个样本的数据都是对总体的数据的估计.标准误代表的就是当前的样本对总体数据的估计,标准误代表的就是样本均数与总体均数的相对误差.标准误是由样本的标准差除以样本人数的开平方来计算的.从这里可以看到,标准误更大的是受到样本人数的影响.样本人数越大,标准误越小,那么抽样误差就越小,就表明所抽取的样本能够较好地代表样本.
2023-09-01 02:01:321

什么是标准差、极差,他们的意义是什么?

标准差(StandardDeviation),中文环境中又常称均方差,但不同于均方误差(meansquarederror,均方误差是各数据偏离平均数的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。极差,是用来表示统计资料中的变异量数(measuresofvariation),其最大值与最小值之间的差距;即最大值减最小值后所得之数据。极差不能用作比较,单位不同;方差能用作比较,因为都是个比率。
2023-09-01 02:01:411

什么是方差和标准差

问题一:方差,标准差的概念是什么? 标准差(Standard Deviation) 各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数 标准差是方差的算术平方根。 标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。 标准差也被称为标准偏差,或者实验标准差。 关于这个函数在EXCEL中的STDEVP函数有详细描述,EXCEL中文版里面就是用的“标准偏差”字样。但我国的中文教材等通常还是使用的是“标准差”。 公式如图。 P.S. 在EXCEL中STDEVP函数就是下面评论所说的另外一种标准差,也就是总体标准差。在繁体中文的一些地方可能叫做“母体标准差” 因弧有两个定义,用在不同的场合: 如是总体,标准差公式根号内除以n, 如是样本,标准差公式根号内除以(n-1), 因为我们大量接触的是样本,所以普遍使用根号内除以(n-1), 问题二:方差,标准差的概念是什么? 方差和标准差是用来描述一组数据的波动性的(集中还是分散)标准差的平方就是方差。 一、方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。方差是衡量源数据和期望值相差的度量值。 二、标准差 ,中文环境中又常称均方差,但不同于均方误差,均方误差是各数据偏离真实值的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的一组数据,标准差未必相同。 注:方差和标准差是测算离散趋势最重要、最常用的指标。 问题三:方差 标准差 协方差 有什么区别 首先,方差和标准差通常针对一维数据,也即各个数据描述的是同一类事物,比如身高。标准差为方差的算术平方根。方差和标准差用以刻画各个数据与所有数据平均值的靠近程度,它们的取值越小,则各数据同平均值越为接近。 其次,协方差针对二维数据,也即两个维度的数据描述的是不同类事物,比如身高和体重。协方差用以刻画两类数据间的相关程度,其计算公式见下图。若结果为正值,表示两类数据正相关,比如身高越高,体重越大;若结果为负值,表示两类数据负相关,比如身高越高,体重越小;若结果为0,表示两类数据没有关联,比如身高和体重没有明显关系。另外,结果的绝对值越大,对应相关程度越高。 问题四:方差,平方差,标准差的公式是什么? 1、方差是各个数据分别与其平均数之差的平方的和的平均数,用字母D表示。在概率论和数理统计中,方差(Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度。在许多实际问题中,研究随机变量和均值之间的偏离程度有着重要意义。其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s^2就表示方差。 2、平方差公式(difference of two squares)是数学公式的一种,它属于乘法公式、因式分解及恒等式,被普遍使用。平方差指一个平方数或正方形,减去另一个平方数或正方形得来的乘法公式:a2-b2=(a+b)(a-b) 3、标准差(Standard Deviation) ,中文环境中又常称均方差,但不同于均方误差(mean squared error,均方误差是各数据偏离真实值的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。假设有一组数值X1,X2,X3,......XN(皆为实数),其平均值(算术平均值)为μ,公式如图。 问题五:方差和标准差的公式分别是什么? 40分 方差有两个计算公式:法一: s^2=1/n ×[(x1-x)^2+(x2-x)^2+.......+(xn-x)^2] 前x为数据个数,后x为这组数据的平均数,x1、x2、xn等是每个数据 法二: s^2=1/n ×(x1^2 +x2^2 +...+xn^2) -x^2 标准差是方差的平方根,即:s=√1x ×[(x1-x)^2+(x2-x)^2+.......+(xn-x)^2].【【不清楚,再问;满意, 请采纳!祝你好运开!!】】 问题六:方差标准差的意义是什么?它们有何特性 1、方差的意义在于反映了一组数据与其平均值的偏离程度; 2、方差是衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。 3、方差的特性在于:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。 4、标准差是方差的算术平方根,意义在于反映一个数据集的离散程度。
2023-09-01 02:01:491

平均差,标准差,方差,极差的定义分别是什么?有什么区别和联系?

平均差,标准差,方差,极差的定义分别是什么?有什么区别和联系?, 分别解释一下极差、方差、标准差的定义? 极差是指一组数据内的最大值和最小值之间的差异。 平均差是说明集中趋势的,标准差是说明一组数据的离中趋势的。 一组数据中各数据与平均数的差的平方和的平均数叫做这组数据的方差; 极差越大,平均差的代表性越小,反之亦然;标准差越大,平均差的代表性越小,反之亦然。 方差的算术平方根=标准差 平均差和标准差的区别 平均差。可以是多个误差的平均值。 标准差,是规定允许的的误差。 什么是方差、平均差、标准差? 方差是各个数据与平均数之差的平方的平均数,标准差是各数据偏离平均数的距离的平均数,平均差是总体所有单位的平均值与其算术平均数的离差绝对值的算术平均数。 方差是各个数据与平均数之差的平方的平均数,即 s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2] ,其中,x_表示样本的平均数,n表示样本的数量,^2表示平方,xn表示个体,而s^2就表示方差。 标准差 ,也称均方差,是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根,标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 平均差是总体所有单位的平均值与其算术平均数的离差绝对值的算术平均数,平均差是一种平均离差。离差是总体各单位的标志值与算术平均数之差。因离差和为零,离差的平均数不能将离差和除以离差的个数求得,而必须讲离差取绝对数来消除正负号。
2023-09-01 02:01:591

平均差和标准差的区别是什么?

平均差:平均差是表示各个变量值之间差异程度的数值之一。指各个变量值同平均数的离差绝对值的算术平均数。标准差:是离均差平方的算术平均数的平方根,用σ表示。标准差是方差的算术平方根。方差:方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。极差:极差又称范围误差或全距(Range),以R表示,是用来表示统计资料中的变异量数(measures of variation),其最大值与最小值之间的差距,即最大值减最小值后所得之数据。是指一组数据内的最大值和最小值之间的差异.区别:1、平均差是说明集中趋势的,标准差是说明一组数据的离中趋势的.平均差是反应各标志值与算术平均数之间的平均差异,是各个数据与平均值差值的绝对值的平均数;标准差是离均差平方和平均后的方根,更能反映一个数据集的离散程度。2、方差是每个数减去平均数的平方的和,标准差是把方差除以我们的关注的事物的个数,方差=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],标准差=方差的算术平方根。3、平均差是总体所有单位与其算术平均数的离差绝对值的算术平均数。方差是各个数据与其算术平均数的离差平方和的平均数。联系:极差越大,平均差的代表性越小,反之亦然;标准差越大,平均差的代表性越小,反之亦然,方差的算术平方根=标准差。扩展资料:方差的统计学意义当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。方差相应的计算公式为:标准差与方差不同的是,标准差和变量的计算单位相同,比方差清楚,因此很多时候我们分析的时候更多的使用的是标准差。参考资料来源:百度百科——方差百度百科——极差百度百科——标准差百度百科——平均差
2023-09-01 02:02:061

什么是标准差系数?为什么有了标准差还要计算标准差系数

标准差系数,又称为均方差系数,离散系数。在财务管理中,称为变化系数,指的是标准差/均值。它是从相对角度观察的差异和离散程度,在比较相关事物的差异程度时较之直接比较标准差要好些。标准差(StandardDeviation),中文环境中又常称均方差,但不同于均方误差(meansquarederror,均方误差是各数据偏离真实值的距离平方的平均数,也即误差平方和的平均数,计算公式形式上接近方差,它的开方叫均方根误差,均方根误差才和标准差形式上接近),标准差是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。标准差系数是将标准差与相应的平均数对比的结果。标准差和其他变异指标一样,是反映标志变动度得绝对指标。它的大小,不仅取决于标准值的离差程度,还决定于数列平均水平的高低。因而对于具有不同水平的数列或总体,就不宜直接用标准差来比较其标志变动度的大小,而需要将标准差与其相应的平均数对比,计算标准差系数,即采用相对数才能进行比较。
2023-09-01 02:02:511

标准差和方差有什么区别?

标准差公式是:s=sqrt(s^2)。方差公式是:s^2=/n。标准差公式和方差公式是数学统计学中的重要公式。是离均差平方的算术平均数的平方根,用σ表示。在概率统计中最常使用作为统计分布程度上的测量,标准差是方差的算术平方根,标准差能反映一个数据集的离散程度。简介简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。虽然样本的真实值是不可能知道的,但是每个样本总是会有一个真实值的,不管它究竟是多少。可以想象,一个好的检测方法,其检测值应该很紧密的分散在真实值周围。如果不紧密,与真实值的距离就会大,准确性当然也就不好了,不可能想象离散度大的方法,会测出准确的结果。因此,离散度是评价方法的好坏的最重要也是最基本的指标。
2023-09-01 02:03:001

什么是标准差系数

标准差更有代表性。标准差系数是标准差与平均值的比值越大说明不是标准差越大就是平均值越小,标准差越大说明数据离散度很大平均值就代表性就弱,平均值越小如果一组数据全部都缩小一半那么均值也缩小一半而标准差也缩小一半是同步的说明在均值很小的情况下还有比较大的标准差也说明数据离散度大。标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。
2023-09-01 02:03:351

数学标准差公式是什么

标准差公式是一种数学公式。标准差也被称为标准偏差,或者实验标准差,公式如下所示:样本标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/(n-1))总体标准差=σ=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n )注解:上述两个标准差公式里的x为一组数(n个数据)的算术平均值。当所有数(个数为n)概率性地出现时(对应的n个概率数值和为1),则x为该组数的数学期望。标准差由于方差是数据的平方,一般与检测值本身相差太大,人们难以直观地衡量,所以常用方差开根号(取算术平方根)换算回来。这就是我们要说的标准差(SD)。在统计学中,样本的均差多是除以自由度(n-1),它的意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是(n-1)。以上内容参考百度百科-标准差公式
2023-09-01 02:03:544

标准差是什么意思

标准差(Standard Deviation) ,数学术语,是离均差平方的算术平均数(即:方差)的算术平方根,用σ表示。标准差也被称为标准偏差,或者实验标准差,在概率统计中最常使用作为统计分布程度上的测量依据。标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。标准差、标准误差标准差与标准误差都是数理统计学的内容,两者不但在字面上比较相近,而且两者都是表示距离某一个标准值或中间值的离散程度,即都表示变异程度,但是两者是有着较大的区别的。首先要从统计抽样的方面说起。现实生活或者调查研究中,我们常常无法对某类欲进行调查的目标群体的所有成员都加以施测,而只能够在所有成员(即样本)中抽取一些成员出来进行调查,然后利用统计原理和方法对所得数据进行分析,分析出来的数据结果就是样本的结果,然后用样本结果推断总体的情况。一个总体可以抽取出多个样本,所抽取的样本越多,其样本均值就越接近总体数据的平均值。
2023-09-01 02:04:231

标准差是什么意思

标准差(Standard Deviation) ,是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。这个标准差大小没有标准的比较依据,可以根据平均数相同的另一数组比较其标准差,标准差越小,数组离散越小。扩展资料:标准差意义由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差。在统计学中样本的均差多是除以自由度(n-1),它是意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n-1。计算公式标准差(StandardDeviation),在概率统计中最常使用作为统计分布程度(statisticaldispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:为非负数值,与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。例如,两组数的集合{0,5,9,14}和{5,6,8,9}其平均值都是7,但第二个集合具有较小的标准差。参考资料来源:百度百科-标准差
2023-09-01 02:04:391

什么是标准差?

标准差(Standard Deviation) ,是离均差平方的算术平均数(即:方差)的算术平方根,用σ表示。标准差也被称为标准偏差,或者实验标准差,在概率统计中最常使用作为统计分布程度上的测量依据。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。例如,两组数的集合{0,5,9,14}和{5,6,8,9}其平均值都是7,但第二个集合具有较小的标准差。标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色。如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。
2023-09-01 02:04:541

标准差是什么意思?

标准差也被称为标准偏差,或者实验标准差。简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。一般来说标准差较小为好,这样代表比较稳定。扩展资料:标准差是在概率统计中最常使用作为统计分布程度上的测量。标准差定义为方差的算术平方根,反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。标准差也称均方差,是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。标准差可以反映平均数不能反映出的东西(比如稳定度等)。标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。参考资料:百度百科-标准差
2023-09-01 02:05:101

标准差是什么意思?

标准差也被称为标准偏差,或者实验标准差。简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大。一个较小的标准差,代表这些数值较接近平均值。一般来说标准差较小为好,这样代表比较稳定。标准差也被称为标准偏差,或者实验标准差,公式如下所示:标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n)。简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大。一个较小的标准差,代表这些数值较接近平均值。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。
2023-09-01 02:05:281

标准差是什么?

是标准差(Standard Deviation) ,中文环境中又常称均方差,是离均差平方的算术平均数的平方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。公式:1、如是总体(即估算总体方差),根号内除以n(对应excel函数:STDEVP);2、如是抽样(即估算样本方差),根号内除以(n-1)(对应excel函数:STDEV);3、因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)。扩展资料:标准差和离散度关系:标准差是反映一组数据离散程度最常用的一种量化形式,是表示精确度的重要指标。说起标准差首先得搞清楚它出现的目的。我们使用方法去检测它,但检测方法总是有误差的,所以检测值并不是其真实值。检测值与真实值之间的差距就是评价检测方法最有决定性的指标。但是真实值是多少,不得而知。因此怎样量化检测方法的准确性就成了难题。这也是临床工作质控的目的:保证每批实验结果的准确可靠。虽然样本的真实值是不可能知道的,但是每个样本总是会有一个真实值的,不管它究竟是多少。可以想象,一个好的检测方法,其检测值应该很紧密的分散在真实值周围。如果不紧密,与真实值的距离就会大,准确性当然也就不好了,不可能想象离散度大的方法,会测出准确的结果。因此,离散度是评价方法的好坏的最重要也是最基本的指标。一组数据怎样去评价和量化它的离散度,有很多种方法:极差最直接也是最简单的方法,即最大值-最小值(也就是极差)来评价一组数据的离散度。这一方法在日常生活中最为常见,比如比赛中去掉最高最低分就是极差的具体应用。离均差平方和由于误差的不可控性,因此只由两个数据来评判一组数据是不科学的。所以人们在要求更高的领域不使用极差来评判。其实,离散度就是数据偏离平均值的程度。因此将数据与均值之差(我们叫它离均差)加起来就能反映出一个准确的离散程度。和越大离散度也就越大。但是由于偶然误差是成正态分布的,离均差有正有负,对于大样本离均差的代数和为零的。为了避免正负问题,在数学有上有两种方法:一种是取绝对值,也就是常说的离均差绝对值之和。而为了避免符号问题,数学上最常用的是另一种方法--平方,这样就都成了非负数。因此,离均差的平方和成了评价离散度一个指标。方差由于离均差的平方和与样本个数有关,只能反映相同样本的离散度,而实际工作中做比较很难做到相同的样本,因此为了消除样本个数的影响,增加可比性,将离均差的平方和求平均值,这就是我们所说的方差成了评价离散度的较好指标。样本量越大越能反映真实的情况,而算术平均值却完全忽略了这个问题,对此统计学上早有考虑,在统计学中样本的均差多是除以自由度(n-1),它的意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n-1。标准差意义由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差。在统计学中样本的均差多是除以自由度(n-1),它是意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是n-1。变异系数标准差能很客观准确的反映一组数据的离散程度,但是对于不同的项目,或同一项目不同的样本,标准差就缺乏可比性了,因此对于方法学评价来说又引入了变异系数CV。一组数据的平均值及标准差常常同时做为参考的依据。在直觉上,如果数值的中心以平均值来考虑,则标准差为统计分布之一“自然”的测量。参考资料来源:百度百科--概率参考资料来源:百度百科--标准差
2023-09-01 02:05:391

标准差是什么?

标准差也被称为标准偏差,或者实验标准差。简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 一般来说标准差较小为好,这样代表比较稳定。标准差也被称为标准偏差,或者实验标准差,公式如下所示:标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n)。简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。
2023-09-01 02:05:561

标准差是什么意思?

标准差(Standard Deviation),在概率统计中最常使用作为统计分布程度(statistical dispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:为非负数值, 与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。标准计算公式:假设有一组数值Xu2081,Xu2082,Xu2083,......Xn(皆为实数),其平均值(算术平均值)为μ,公式如图1。标准差也被称为标准偏差,或者实验标准差,公式为  简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。例如,两组数的集合 {0,5,9,14} 和 {5,6,8,9} 其平均值都是 7 ,但第二个集合具有较小的标准差。标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差约为17.08分,B组的标准差约为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。如是总体(即估算总体方差),根号内除以n(对应excel函数:STDEVP);如是抽样(即估算样本方差),根号内除以(n-1)(对应excel函数:STDEV);因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)。公式意义正态分布图所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。深蓝区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之 68%。对于正态分布,两个标准差之内(深蓝,蓝)的比率合起来为 95%。对于正态分布,正负三个标准差之内(深蓝,蓝,浅蓝)的比率合起来为 99%。
2023-09-01 02:06:091

什么是标准差?

  标准差  标准差也被称为标准偏差,或者实验标准差,标准差(Standard Deviation)描述各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度,标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。平均数相同的两个数据集,标准差未必相同。
2023-09-01 02:07:402

什么是标准差,为什么标准差越小越好?

标准差也被称为标准偏差,或者实验标准差。简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大。一个较小的标准差,代表这些数值较接近平均值。一般来说标准差较小为好,这样代表比较稳定。标准差也被称为标准偏差,或者实验标准差,公式如下所示:标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n)。简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大。一个较小的标准差,代表这些数值较接近平均值。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。
2023-09-01 02:08:281

标准差是什么意思?

标准差也被称为标准偏差,或者实验标准差。简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。一般来说标准差较小为好,这样代表比较稳定。扩展资料:标准差是在概率统计中最常使用作为统计分布程度上的测量。标准差定义为方差的算术平方根,反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。标准差也称均方差,是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。标准差可以反映平均数不能反映出的东西(比如稳定度等)。标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。参考资料:百度百科-标准差
2023-09-01 02:08:401

标准差是什么意思?

标准差(Standard Deviation),在概率统计中最常使用作为统计分布程度(statistical dispersion)上的测量。标准差定义为方差的算术平方根,反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。其公式如下所列。标准差的观念是由卡尔·皮尔逊(Karl Pearson)引入到统计中。第一步,计算平均值(A1+A2+……+An)/n在这里,5, 6, 8, 9的平均值为(5+6+8+9)/4=7第二步,计算标准差标准差σ=√0.25*{(5-7)*(5-7)+(6-7)*(6-7)+(8-7)*(8-7)+(9-7)*(9-7)}=√10/√4=1.58扩展资料测量到分布程度的结果,原则上具有两种性质:为非负数值, 与测量资料具有相同单位。 一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。标准计算公式假设有一组数值X1,X2,X3,......Xn(皆为实数),其平均值为μ。平均值标准差也被称为标准偏差,或者实验标准差。简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。例如,两组数的集合 {0, 5, 9, 14} 和 {5, 6, 8, 9} 其平均值都是 7 ,但第二个集合具有较小的标准差。标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越细,代表回报较为稳定,风险亦较小。例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.078分,B组的标准差为2.16分(此数据是在R统计软件中运行获得),说明A组学生之间的差距要比B组学生之间的差距大得多。参考资料:标准差的百度百科
2023-09-01 02:08:551

标准差是什么意思 什么是标准差

1、标准差(Standard Deviation) ,是离均差平方的算术平均数(即:方差)的算术平方根,用σ表示。标准差也被称为标准偏差,或者实验标准差,在概率统计中最常使用作为统计分布程度上的测量依据。 2、标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。
2023-09-01 02:09:071

什么是标准差

标准差(StandardDeviation),中文环境中又常称均方差,是离均差平方的算术平均数的平方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。 标准差(Standard Deviation),中文环境中又常称均方差,是离均差平方的算术平均数的平方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。 在概率统计中最常使用作为统计分布程度(statistical dispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:为非负数值, 与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。 标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。
2023-09-01 02:09:151

请问标准差是什么意思啊?

  标准差  标准差也被称为标准偏差,或者实验标准差,标准差(Standard Deviation)描述各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度,标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。平均数相同的两个数据集,标准差未必相同。
2023-09-01 02:09:271

标准差是什么意思?

混凝土的标准差就是统计里的一个应用方差方差和标准差:样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。数学上一般用e{[x-e(x)]^2}来度量随机变量x与其均值e(x)的偏离程度,称为x的方差。定义设x是一个随机变量,若e{[x-e(x)]^2}存在,则称e{[x-e(x)]^2}为x的方差,记为d(x)或dx。即d(x)=e{[x-e(x)]^2},而σ(x)=d(x)^0.5(与x有相同的量纲)称为标准差或均方差。由方差的定义可以得到以下常用计算公式:d(x)=e(x^2)-[e(x)]^2方差的几个重要性质(设一下各个方差均存在)。(1)设c是常数,则d(c)=0。(2)设x是随机变量,c是常数,则有d(cx)=c^2d(x)。(3)设x,y是两个相互独立的随机变量,则d(x+y)=d(x)+d(y)。(4)d(x)=0的充分必要条件是x以概率为1取常数值c,即p{x=c}=1,其中e(x)=c。标准差标准差(standarddeviation)各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。例如,a、b两组各有6位学生参加同一次语文测验,a组的分数为95、85、75、65、55、45,b组的分数为73、72、71、69、68、67。这两组的平均数都是70,但a组的标准差为17.08分,b组的标准差为2.16分,说明a组学生之间的差距要比b组学生之间的差距大得多。
2023-09-01 02:09:411

什么叫标准差,怎么用?

标准差(Standard Deviation),在概率统计中最常使用作为统计分布程度(statistical dispersion)上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:为非负数值, 与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。标准计算公式:假设有一组数值Xu2081,Xu2082,Xu2083,......Xn(皆为实数),其平均值(算术平均值)为μ,公式如图1。标准差也被称为标准偏差,或者实验标准差,公式为  简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。例如,两组数的集合 {0,5,9,14} 和 {5,6,8,9} 其平均值都是 7 ,但第二个集合具有较小的标准差。标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差约为17.08分,B组的标准差约为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。如是总体(即估算总体方差),根号内除以n(对应excel函数:STDEVP);如是抽样(即估算样本方差),根号内除以(n-1)(对应excel函数:STDEV);因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)。公式意义正态分布图所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。深蓝区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之 68%。对于正态分布,两个标准差之内(深蓝,蓝)的比率合起来为 95%。对于正态分布,正负三个标准差之内(深蓝,蓝,浅蓝)的比率合起来为 99%。
2023-09-01 02:10:001

标准差和方差是什么意思?

方差开根号取正的那个就是标准差。方差反应了一组数据平均程度,方差大于等于0。方差越大,数值间差的越大,比方说1个亿和1之间差距很大,而如果一组数据全是1,即同一常数,方差为0。
2023-09-01 02:10:131

标准差是什么意思?

标准差也被称为标准偏差,或者实验标准差。简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。一般来说标准差较小为好,这样代表比较稳定。扩展资料:标准差是在概率统计中最常使用作为统计分布程度上的测量。标准差定义为方差的算术平方根,反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。标准差也称均方差,是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。标准差可以反映平均数不能反映出的东西(比如稳定度等)。标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。参考资料:百度百科-标准差
2023-09-01 02:10:481

标准差是什么意思,有什么公式可以计算吗?

方差是各个数据与平均数之差的平方的和的平均数,公式为:标准差:标准差=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n)。是离均差平方的算术平均数的平方根,用σ表示。在概率统计中最常使用作为统计分布程度上的测量。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。扩展资料:简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。虽然样本的真实值是不可能知道的,但是每个样本总是会有一个真实值的,不管它究竟是多少。可以想象,一个好的检测方法,其检测值应该很紧密的分散在真实值周围。如果不紧密,与真实值的距离就会大,准确性当然也就不好了,不可能想象离散度大的方法,会测出准确的结果。因此,离散度是评价方法的好坏的最重要也是最基本的指标。
2023-09-01 02:11:161

什么是标准差,有什么意义?

http://www.ahscyz.net.cn/wsfw/kxg/shengwu/web1/res/seniorbio/consult/001/0114.htm标准差(standarddeviation)样本内各变数变异程度的度量。由样本计算标准差的公式为:为求和符号。从上可知标准差是反映样本内各个变数与平均数差异大小的一个统计参数。从S可了解样本内各变数的变异程度及样本平均数代表性的可反之亦然。此外,在生物统计中,还用样本标准差来估计总体标准差。在实践中通常用下式计算样本标准差S。举例:调查某小组18名学生的身高(cm),其数据为:173,165,154,180,175,170,166,162,158,169,160,174,179,177,168,157,160,163。经计算得∑x=3010,∑x2=504408,数的次数分布作出估计,如观察数据属常态分布(正态分布),于是有:在的范围内;变数的个数约有95.46%落在x±2S的范围内;变数的个数约有167.2222±7.9303(159.2919~175.1525)厘米的范围内;约有95%的学生身高在167.2222±2×7.9303(151.3616~183.0828)厘米的范围差是分析数量性状最常用的两个参数。
2023-09-01 02:12:191

标准差是什么意思啊?

标准差指的是:标准差,是离均差平方的算术平均数的算术平方根,用σ表示。标准差也被称为标准偏差,或者实验标准差,在概率统计中最常使用作为统计分布程度上的测量依据。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。标准差的应用:标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远,则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。
2023-09-01 02:12:271

标准差代表什么意思?

标准差也被称为标准偏差,或者实验标准差。简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 一般来说标准差较小为好,这样代表比较稳定。标准差也被称为标准偏差,或者实验标准差,公式如下所示:标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n)。简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。
2023-09-01 02:12:521

标准差代表什么意思

问题一:什么叫标准差?标准差的计算公式? 一组数据中的每个数分别减去这组数据的平均数的差的平方相加起来除以这组数据的个数,就是该组数据的方差,方差再开平方即为标准差.如数据1、2、3、4、5平均数为3,则方差的计算公式为:[(1-3) ^ 2+(2-3) ^ 2+(3-3) ^ 2+(4-3) ^ 2+(5-3) ^ 2]÷ 5 问题二:标准差是什么意思? 标准差,在概率统计中最常使用作为统计分布程度上的测量。标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。 标准差是一种表示分散程度的统计观念。标准差已广泛运用在股票以及共同基金投资风险的衡量上,主要是根据基金净值于一段时间内波动的情况计算而来的。一般而言,标准差愈大,表示净值的涨跌较剧烈,风险程度也较大。 实务的运作上,可进一步运用单位风险报酬率的概念,同时将报酬率的风险因素考虑在内。所谓单位风险报酬率是指衡量投资人每承担 一单位的风险,所能得到的报酬,以夏普指数最常为投资人运用。 标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 问题三:标准差越大是什么意思 标准差也被称为标准偏差,或者实验标准差,公式如下所示:标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +......(xn-x)^2)/n)。 简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 例如,两组数的 *** {0, 5, 9, 14} 和 {5, 6, 8, 9} 其平均值都是 7 ,但第二个 *** 具有较小的标准差。 标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值 *** 的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。 标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。 例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.078分,B组的标准差为2.160分(此数据时在R统计软件中运行获得),说明A组学生之间的差距要比B组学生之间的差距大得多。 如是总体,标准差公式根号内除以n 如是样本,标准差公式根号内除以(n-1)。 因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)。 公式意义 所有数减去平均值,它的平方和除以数的个数(或个数减一),再把所得值开根号,就是1/2次方,得到的数就是这组数的标准差。 问题四:标准差用什么字母表示?S? 湖 州 精 锐 为您解答: 标准差,也称均方差,是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用S(σ)表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 问题五:标准差的数值的大小代表什么意义?标准差大好还是小好? 标准差也被称为标准恭差,或者实验标准差。简单来说,标准差是一组数据平均值分散程度的一种度量。 一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 一般来说标准差较小为好,这样代表比较稳定。 问题六:标准差是什么意思? 同学你好,很高兴为您解答! 您所说的这个词语,是属于期货从业词汇的一个,掌握好期货从业词汇可以让您在期货从业的学习中如鱼得水,这个词的翻译及意义如下: 在金融财务上,将标准差应用在投资的年度回报率,以衡量投资的波动性(风险)。 希望高顿网校的回答能帮助您解决问题,更多期货从业问题欢迎提交给高顿企业知道。 高顿祝您生活愉快! 问题七:标准差是什么意思 标准差(Standard Deviation) ,也称均方差(mean square error),是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 标准差可以反映平均数不能反映出的东西(比如稳定度等)。 问题八:数学中标准差是什么意思 标准差(Standard Deviation) 各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数 标准差是方差的算术平方根。 标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。 标准差也被称为标准偏差,或者实验标准差。 问题九:什么是方差? 样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。 数学上一般用E{[X-E(X)]^2}来度量随机变量X与其均值E(X)的偏离程度,称为X的方差。 定义 设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X)或DX。即D(X)=E{[X-E(X)]^2},而σ(X)=D(X)^供.5(与X有相同的量纲)称为标准差或均方差。 由方差的定义可以得到以下常用计算公式: D(X)=E(X^2)-[E(X)]^2 S^2=[(x1-x拔)2+(x2-x拔)^2+(x3-x拔)^2+…+(xn-x拔)^2]/n 方差的几个重要性质(设一下各个方差均存在)。 (1)设c是常数,则D(c)=0。 (2)设X是随机变量,c是常数,则有D(cX)=(c^2)D(X)。 (3)设X,Y是两个相互独立的随机变量,则D(X+Y)=D(X)+D(Y)。 (4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。 问题十:标准差和标准离差是什么关系? 各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数 标准差是方差的算术平方根。 标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。 标准离差是各具体数据与标准差之差
2023-09-01 02:13:011