- 再也不做站长了
-
1、拐点和极值点通常是不一样的,两者的定义是不同的。
极值点处一阶导数为0,一阶导数描述的是原函数的增减性;拐点处二阶导数为0,二阶导数描述的是原函数的凹凸性。
2、判读方法不同。
如果该函数在该点及其领域有一阶二阶三阶导数存在,那么函数的一阶导数为0,且二阶导数不为0的点为极值点;函数的二阶导数为0,且三阶导数不为0的点为拐点。如,y=x^4, x=0是极值点但不是拐点。如果该点不存在导数,需要实际判断,如y=|x|, x=0时导数不存在,但x=0是该函数的极小值点。
拓展资料:
拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
在生活中借指事物的发展趋势开始改变的地方(例如:经济运行出现回升拐点)。
参考资料:百度百科-拐点
- 好投
-
1、拐点和极值点通常是不一样的,两者的定义是不同的。
极值点处一阶导数为0,一阶导数描述的是原函数的增减性。
拐点处二阶导数为0,二阶导数描述的是原函数的凹凸性。
2、判读方法不同。
如果该函数在该点及其领域有一阶二阶三阶导数存在,那么函数的一阶导数为0,且二阶导数不为0的点为极值点;函数的二阶导数为0,且三阶导数不为0的点为拐点。如,y=x^4, x=0是极值点但不是拐点。如果该点不存在导数,需要实际判断,如y=|x|, x=0时导数不存在,但x=0是该函数的极小值点。
扩展资料:
若f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。极值点是函数图像的某段子区间内上极大值或者极小值点的横坐标。极值点出现在函数的驻点(导数为0的点)或不可导点处(导函数不存在,也可以取得极值,此时驻点不存在)。
极值点与稳定点
方程 的解 ,即 称为函数 的稳定点。
注:定义不要求函数 可导,所以可导函数 的极值点必须是稳定点,但稳定点不一定是极值点。
在数学分析中,函数的最大值和最小值(最大值和最小值)被统称为极值(极数),是给定范围内的函数的最大值和最小值(本地 或相对极值)或函数的整个定义域(全局或绝对极值)。皮埃尔·费马特(Pierre de Fermat)是第一位发现函数的最大值和最小值数学家之一。
拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
设函数y=f(x)在点 的某邻域内连续,若( ,f( ))是曲线y=f(x)凹与凸的分界点,则称( ,f( ))为曲线y=f(x)的拐点。
注:拐点( ,f( ))是曲线上的一点,它有横坐标和纵坐标,不要只把横坐标当成拐点。
参考资料:百度百科-极值点、百度百科-拐点
- 寻云出海
-
高等数学里面涉及到一些函数图像的性质,但是说这些图像性质就有一些就特别容易混乱,比如拐点极值点注点这个非常容易混乱,但是是有一些判别的方法,可以让你告别混乱的。
函数二阶导等于0的点称为拐点,也是函数凹凸性发生改变的点,然后你可以选择带入一个二阶导的值,就是在这个拐点区间的值判断出二阶导是大于0还是小于0,大于0它就是向下凹的,小于0就是向上凸的,但是等于0的点,并不代表着它一定是极值点。函数的图像拐点是二阶导等于0的点极值点也是一阶导等于02阶导有的话也是等于0的这个点,但是两者并不是互通的,就是说有可能一个点它是拐点,但是它不是极值点,比如说它有可能会发生下面是凸的,上面是凹的,但是它的凹凸性发生了改变这个点的上升性没有改变,只是上升的速率发生了改变,这个就被称为拐点,但是它不是极值点。
函数的一阶导等于0,这一点是极值点,然后在端点也有可能是极值点,是在有限区间之内,极值点和拐点不是一个点可以推断出的是拐点,不一定是极值点,但是极值点有可能是拐点,两者并不存在必要的联系。
去判断一个函数的图像,它的拐点极值点上升性,凹凸性等等最简单有效的方法是求出它的一阶导求出它的二阶导,然后去画出它的图像,图像画出来之后它到底是拐点还是极值点,就能够很简单的判断出来哈,如果非要用一些文字性的东西去判断的话会很困难,而且说拐点和极值点之间没有必要性,是说两者不见得会相互影响,但是两者也有可能相互影响,所以文字的东西说不清。
- bikbok
-
定义不同:
极值点:函数的单调性发生变化的点,或是函数的局部极大值点或极小值点。(若函数存在导数时,函数的极值点是一阶导数变号的零点,即函数的导数为0,且二阶导数不为0。)
拐点:函数的凹凸性发生变化的点,或者是函数的二阶导数为0,且三阶导数不为0的点(或者说二阶导数在该点两侧异号。)
2.判读方法不同:
如果该函数在该点及其领域有一阶二阶三阶导数存在,那么函数的一阶导数为0,且二阶导数不为0的点为极值点;函数的二阶导数为0,且三阶导数不为0的点为拐点。如,y=x^4, x=0是极值点但不是拐点。
如果该点不存在导数,需要实际判断,如y=|x|, x=0时导数不存在,但x=0是该函数的极小值点。
拓展说明:
除了极值点和拐点,还有驻点。
驻点:在微积分,驻点(Stationary Point)又称为平稳点、稳定点或临界点(Critical Point)是函数的一阶导数为零,即在“这一点”,函数的输出值停止增加或减少。一个函数的驻点不一定是这个函数的极值点(考虑到这一点左右一阶导数符号不改变的情况);反过来,在某设定区域内,一个函数的极值点也不一定是这个函数的驻点。
- 来投吧
-
拐点和极值点通常是不一样的。它们的定义有所区别
极值点处一阶导数为0,一阶导数描述的是原函数的增减性
拐点处二阶导数为0,二阶导数描述的是原函数的凹凸性
拐点与极值点的联系:拐点不一定是极值点,但极值点一定是拐点。
举例说明,请看下图
如图所示:
A、B、C、D、E、F、G、H、I都是拐点
极值点只有两个,E是最大值,F是极小值
- 西柚不是西游
-
拐点就是改变凹凸性的点 两侧点调性可以相同 如图第一段和第二段都是单调递增一阶导数大于零
极值点两侧单调性不同 如图第二段单调递增一阶导数大于零,第三段单调递减一阶导数小于零
拐点与一阶导数无关(可能该点一阶导数不存在)如y=x^(1/3)
=-=数学符号好难打 不一一写了
- FinCloud
-
拐点和极值点通常是不一样的。
正如你所说,两者的定义是不同的。
极值点处一阶导数为0,一阶导数描述的是原函数的增减性
拐点处二阶导数为0,二阶导数描述的是原函数的凹凸性
- nicejikv
-
前提函数可导,如若不可导注意图像尖点,可导函数驻点,一阶导为零;可导函数极值点,一阶导为零,二阶导不为零(大于0极小值、小于0极大值);可导函数拐点二阶导为零,领域附近异号,拐点一般位于连接凹与凸的点。所以可导函数中,驻点是极值点的必要条件,但不是充分条件;极值点和拐点定义相矛盾,所以极值点一定不是拐点。(前提可导函数)
- 小菜G的建站之路
-
1.定义不同
(1)极值点:改变函数单调性
(2)拐点:改变函数凹凸性
2.计算方法不同
(1)极值点:①令f"(x)=0,求出驻点或不可导点,当f"(x)在x的左右邻域内相反,则x为极值点。
②令f"(x)=0,f""(x)≠0,x为极值点
(2)拐点:令f"(x)=0,求出每一个实根或二阶不可导点,判断x左右邻域是否符号一致,如果不一致,则为拐点,如果一致,则不是拐点。
- 大牌网络
-
极值点是一阶导数等于0而二阶导数不等于0的点拐点是二阶导数等于0的点
- n投哥
-
拐点和极值点通常是不一样的,两者的定义是不同的。
极值点处一阶导数为0,一阶导数描述的是原函数的增减性;拐点处二阶导数为0,二阶导数描述的是原函数的
- 可桃可挑
-
- 豆豆staR
-
极值点就是一个函数的极大值极小值,在f(X)的一阶导等于o的时候。
拐点就是函数凹凸性改变的地方,在f(X)的二阶导为0的时候。