多元函数

duō yuán hán shù
  • Multivariate function;function of many variables
多元函数多元函数
  1. 给出了多元函数的p,q-Taylor公式及其余项。

    The p , q Taylor formula of function of many variables and its remainder are derived .

  2. 梯度在多元函数上的应用

    The gradient applies in the function of many variables

  3. 利用Gaussian核对多元函数的近似逼近及其误差估计

    Error Estimates for Approximate Approximations with Gaussian Kernels on Multivariate Compact Intervals

  4. 从多元函数的角度解决n元幂指函数的求导

    Solving Derivation Problem of Power Exponential Function of N Variables from the Point of View of the Function of Many Variables

  5. Cauchy微分中值定理在多元函数中的推广

    An Extending of Cauchy 's Mean-Value Theorem on Functions of Several Variables

  6. 首先用解析法建立了一个多元函数模型得出合理的数值,然后利用向量代数知识借助MATLAB模拟出屏上的蝶形形状亮区。

    A multiplex function model is established on the basis of optical principle and then an extent is drawn in the light of MATLAB .

  7. 给出了多元函数相对于积分区域的开普勒(Kepler)公式和开普勒函数的定义;

    Kepler formulas and Kepler functions are defined .

  8. 多元函数的Rolle定理

    Generalization of Rolle Theorem to Multivariate Function

  9. 嗯,它是用来最小化或者最大化多元函数的,例如,一个关于x,y,z的方程,注意了,在这个方程里面的变量之间却不是独立的。

    Well , the goal is to minimize or maximize a function of several variables f Let 's say , for example , f of x , y , z , but where these variables are no longer independent .

  10. 我们将继续,使用dx,dy,这些符号,去研究多元函数。

    Now we are going to use also these kinds of notations , dx , dy and so on , but use them for functions of several variables .

  11. 本文就多元函数的情况,证明了与一元函数的Rolle定理相类似的定理并讨论其应用。

    The theorem for multi variate function , which is similar to Rolle theorem for single variate function , is proved and it 's application is discussed .

  12. 以二元函数为例,给出并证明了泰勒(Taylor)微分中值定理“中间点”的渐近性定理,从而将关于微分中值定理“中间点”的渐近性的探讨推广到多元函数情形。

    This paper has given and proven the asymptotic theorem of the " intermediate point " of Taylor 's Mean Value Theorem , making two-variable function as the specific case . Then such result has been generalized to the function of three or more variables .

  13. 对凸区域DRn上的二次可微函数,本文采用构造混合函数的方法,将多元函数微分中值定理推广到了高阶的情形,并给出了应用示例。

    For a twice differentiable function defined on a convex domain in R ~ n , multivariate differential Mean Value theorems are generalized to the high order case , and an example is given .

  14. 多元函数的三角多项式逼近

    On the approximation of functions of several variables by trigonometrical polynomials

  15. 多元函数取极值的一阶充分条件

    First order sufficient conditions for the extreme values of multivariate function

  16. 矢量法在求多元函数极值中的应用

    Evaluating the extrema of function of several variables with vector representation

  17. 连续小波变换在多元函数空间中的应用

    An application of the continuous wavelet transform in multivariate function space

  18. 多元函数极限不存在的直接判别法

    On the Direct Criterion of Nonexistence of Limit for Multivariable Functions

  19. 对称性在多元函数积分中的应用

    The Application of Symmetry in Multi - function Integral Calculus

  20. 多元函数极值问题的代数解法

    The Algebraic Solution to the Extremum Problem of Multivariate Function

  21. 多元函数的教学是高等数学教学中的一个难点。

    Study of extrme value of multivariate function by matrix ;

  22. 物理量之间的关系可能是多元函数的关系。

    The relationships among physical parameters may be multivariate ones .

  23. 在修正后的模型基础上,构建多元函数模型。

    Multivariate function models were then established based on the validated models .

  24. 分析化学中非线性多元函数拟合的遗传算法

    The Fitting of Non-linear Multi-power Function in Analytical Chemistry by Genetic Algorithm

  25. 有序拓扑空间上多元函数的连续性定理

    Continuity Theorem of the Functions of Many Variables on Ordered Topological Spaces

  26. 一元函数与多元函数在广义积分上的差异

    The Difference of One Variate Function and Multivariate Function in Improper Integral

  27. 多元函数微分法在几何中应用的新认识

    New Approaches to the Application of Multi-element Function Infinitesimal Method in Geometry

  28. 浅谈利用多元函数最优化的方法证明不等式

    On the Use of Multi-function Optimization Method to Prove Inequality

  29. 多元函数极值存在充分条件的推广

    Popularization of Sufficient Condition of Multivariate Function Existing Extremum

  30. 睾丸激素的功能柯西中值定理在多元函数中的推广

    The popularization of Cauchy mie-value theorem in multivariate function