非齐次线性方程组
- 【数】system of non homogeneous linear equations
-
Excel中“规划求解”解决日常工作中遇到的减少成本与增加利润及非齐次线性方程组解的问题。
Through the " solver " of Excel , we can solve two kinds of question which are encountered in our routine . One is the issue of costs reduction & profits increase , the other is the issue of solving the non-homogeneous linear equation .
-
非齐次线性方程组通解的一种简便求法
A Simple Approach to General Solution for Nonhomogeneous Linear Equations
-
非齐次线性方程组的同解类
The Sorts of Same Solution for Solvable Nonhomogeneous Linear Equations
-
基于非齐次线性方程组的系统级故障诊断方法
A method of the system-level fault diagnosis based on the non-idempotent linear equations
-
由非齐次线性方程组解的结构给出静态工作点的基础解;
Then , the basic solution set of conical magnetic bearing static operation points is given based on the solution structure of linear equation group .
-
本文给出了线性空间中亚子空间的概念,讨论了亚子空间的性质和维数,并将其应用到有解的非齐次线性方程组中去。
In this paper , we give the definition of meta subspace of linear space , and discuss the propertys and dimension of meta subspace .
-
在非齐次线性方程组中引入基础解系的概念,并在此基础上进一步讨论了解的结构,以及基础解系间的过渡矩阵。
This paper introduces the concept of basic system of solutions for the nonhomogeneous linear equation set , and further discusses its structure and transition matrix .
-
在线性方程组有解判别定理的基础上,给出了一个判定非齐次线性方程组存在全非零解的方法。
On the basis of the solution identification theorem in linear equations , a method is presented to ascertain whether there exists all-nonzero solutions to an inhomogeneous linear equation .
-
非齐次线性微分方程组
Nonhomogeneous linear system of differential equations
-
二元非齐次线性微分方程组时域、变换域解及解的统一性探讨双线性插值近似网格的栅格数据投影变换
On Solutions to Non-Homogeneous Differential Equations with Two Unknowns Through General Way and Laplace Transform and Discuss on Their Unification Raster Dataset projection transform based-on bilinear interpolation approximate grid algorithm
-
非齐次线性微分方程(组)解的参数变动法
Parametric variation on linear nonhomogenous differential equations
-
有非零解的齐次线性方程组的应用
The Application of Homogeneous Linear Equation System with Non - zero Solution
-
同时,给出了判别广义严格对角占优矩阵(非奇M矩阵)简单实用的方法,该方法只需要解一个非齐次线性方程组即可。
A simple and practicable method of judging generalized strictly diagonally dominant matrices and nonsingular M-matrices is introduced . When this method is adopted , only a non-homogeneous linear equation is needed to solve .