Qubit
- 网络量子位元
-
To understand how it works , imagine you 're playing a game , called " Qubit Refrigerator ," with two friends .
要了解它是如何工作,想像你正在玩一个游戏,叫做“量子比特的电冰箱,”与两个朋友。
-
Ideal dense coding protocols allow one to use prior maximal entanglement to send two bits of classical information by the physical transfer of a single encoded qubit .
在理想的超密编码方案中,发送方凭借一个和接收方共享的最大纠缠纯态,可用传送一量子比特来实现传送两经典比特的信息。
-
A two-level quantum system is a quantum bit ( qubit ) .
一个双态量子体系即量子比特。
-
A new protocol of quantum secret sharing for single qubit through an entangled W state is proposed .
提出用纠缠W态来完成单个量子位的量子秘密分享方案。
-
And as long as the hot qubit stays hot , this quantum fridge continues to work .
只要保持热的热量子比特,这个量子冰箱继续工作。
-
Each extra qubit in a quantum machine doubles the number of simultaneous operations it can perform .
每当量子计算机增加一个丘比特,它能同时进行的操作数即可增加一倍。
-
Specifically the in qubit is now set to " 1 " rather than " 0 " .
特别是in量子位现在被设置成“1”而非“0”。
-
In the case of the " Qubit Refrigerator ," work is done when someone gives coats to Alice .
在案件的“比特的电冰箱,”工作是做大衣时,有人给爱丽丝。
-
So if we apply Mix () twice to any qubit ( in any state ) we get back to where we started .
因此如果我们对任意量子位(处于任何状态)应用两次Mix(),我们就回到了开始的地方。
-
We have also presented an easy scheme to make the geometric phase nonadiabaticaly , and obtained the geometric phase for the single qubit .
给出了一个简易方案用以非绝热的生产几何相位,并得到了单量子位的几何相。
-
CPhase () takes a ( classical ) floating point number as its first argument and a qubit as it 's second argument .
CPhase()的第一个参数是(经典的)浮点数,第二个参数是一个量子位。
-
Not () applied again to the same qubit will undo the effect of the first which is exactly what we would expect from classical computing .
再次对同一量子位使用Not()将撤消第一次的结果,这正是我们在经典计算中所预期的。
-
Here we have allocated a1 qubit ( Boolean ) variable from the qcl quantum heap .
此处我们在qcl量子堆中为一个1量子位(布尔型)变量分配空间。
-
For every " logical " qubit needed to do a calculation , there is a handful of physical ones , all of which need to be entangled .
进行计算所需要的每个“逻辑”丘比特都需要在实际系统中有好几个丘比特,所有这些都需要缠结。
-
The quantum information of each qubit is encoded on the degenerate ground states of the atom , so the entanglement between them is relatively stable against spontaneous emission .
量子信息编码在原子的简并基态能级上,从而使得制备的原子纠缠态在抗自发辐射方面具有很好的稳定性。
-
The record holders , a group in Innsbruck , use a device called an ion trap in which each qubit exists as a superposition of a rubidium atom at different energies .
最高记录是奥地利因斯布鲁特的一个小组创作的,他们使用一种叫做离子阱的装置,其中每个丘比特以不同能量的原子叠加的形式存在。
-
Where a classical bit must be either 0 or 1 , a quantum bit , called a qubit , can be 0 or 1 - or , crucially , a mixture of both .
一个二进制位(bit)上的数字非“0”即“1”;而一个量子位(qubit)上的数字可是“0”可是“1”——关键的来了,还可既是“0”又是“1”。
-
Compared with the recent QKD scheme based on four-photon QEAC , the qubit efficiency of the authors'scheme increases by16.67 % , and the security is3.5 times of it .
与最近的基于四光子避错码的克服量子信道噪声的量子密钥分发方案相比,该方案的量子比特效率提高了16.67%,密钥分发安全性是它的3.5倍。
-
The properties of quantum bit ( Qubit ) and quantum logic gates ( quantum not-gate , Hadamard gate , quantum controlled not-gate , Toffoli gate etc. ) are discussed with Clifford algebra .
以Clifford代数为工具,讲座量子比特(Qubit)与量子逻辑门(量子非门,Hadamard门,量子受控非门,Toffoli门等)的有关性质。
-
The SPECTRUM line shows us where the qubits for a have been allocated in the quantum heap ; in this case the0-bit of a is the rightmost qubit in the heap .
SPECTRUM行告诉我们在量子堆中分配给a的量子位的位置;在这种情况下,a的0位是堆中右面第一位的量子位。
-
Since any logic gate can be constructed by two-qubit controlled not gates ( CN gate ) and one qubit rotation gate ( R gate ), the realization of the CN and R gates has been studied extensively .
任意量子门都可以由二比特控制非门(CN门)和单比特旋转门(R门)组成。因此,人们致力于研究如何实现CN门和R门。
-
The qubit , by contrast , can be in a superposition state corresponding to any mixture of true and false at the same time , like schr ? Dinger 's cat in its mixture of alive and dead .
相较之下,量子位元可以是对、同时混合在一起的叠加态,就像是活与死同时存在的薛丁格的猫。
-
Two-level atom has been regarded as an important principal candidate for quantum bit ( Qubit ), recently . The atomic entangled states are a part of the vital resources in quantum information processes such as quantum teleportation , quantum information storage , etc.
二能级原子是量子比特(Qubit)的重要候选者,纠缠的二能级原子体系是实现量子信息存储、量子隐形传态等量子信息过程的重要资源。