定性理论
- qualitative theory
-
准B∩F型单瞬时Q过程的定性理论
The Qualitative Theory Quasi B ∩ F Type Q-Process with Single Instantaneous State
-
奇点定性理论中的V函数微分法
On the Differential Calculus of Liapunov Functions in the Qualitative Theory of Singular Points
-
由13C-NMR的化学位移值计算了苯衍生物各正则结构的权值,从而使原为定性理论的共振论上升为定量理论;
The originally qualitative resonance theory becomes quantitative by calculation of weights of canonical structures with chemical shift values of 13 C NMR .
-
利用方势阱模型对InxGa1-xN/GaNMQWs结构的光特性进行了量子力学定性理论分析。
A qualitative quantum-mechanical theoretic analysis of optical characteristic of In_xGa_1-xN / GaN MQWs based on square-well model was given .
-
运用常微分方程定性理论的相平面分析方法讨论了Huxley方程,得到了有关其行波解的一些结果。
Huxley equation is discussed by the method of phase plane analysis in ODEs , and some results of travelling-wave solutions are obtained .
-
利用微分方程的定性理论和Liapunov中心定理研究高维自治情形Birkhoff系统周期解的存在性。
Qualitative methods of ordinary differential equation and Liapunov center theorem were used to study the existence of periodic solutions for higher order autonomous Birkhoff systems .
-
用微分方程定性理论和分支理论的方法,讨论了轴流压缩系统的振动模型,证明了周期解和Homoclinic轨道的存在性。
By using the methods of qualitative theory and bifurcation theory , a surge model of the axial flow compression system is analyzed more completely . The existence of periodic solutions and homoclinic orbits is proved .
-
应用微分方程定性理论和构造Liapunov泛函方法,讨论了该系统平衡点的存在性,证明了平衡点的全局与局部的渐近稳定性。
The existence of the equilibrium points in this ecosystem is discussed by using the Qualitative Theory of Differential Equation and the Method of Constructing Liapunov Function , and the global and local asymptotic stability of the equilibrium points is proved .
-
本文针对一类具有HollingⅣ功能性反应函数的捕食系统,应用微分方程稳定性和定性理论、重合度理论,证明了系统正平衡点全局稳定性,极限环的存在唯一性和周期解的存在性。
In this paper , predator-prey systems with Holling ⅳ functional response is studied . With utilizing differential equations stability and qualitative theory , coincidence degree theory , we prove the global stability of positive equilibrium point , the existence and uniqueness limit cycle and existence of periodic solutions .
-
在探讨微分方程定性理论中,尤其在探讨微分方程(组)的稳定性、解的估计及有界性的过程中,Gronwall-Bellman-Bihari不等式是一强有力的工具。
In the study of the qualitative theory of differential equations , especially in the study of the stability of differential equations , the estimate of solutions and the boundedness of solutions , Gronwall-Bellman-Bihari inequality can be used as handy tools .
-
数学物理反问题不适定性理论研究
The Research of Ill - posted Theory of Math-Physics Inverse Problem
-
定性理论与数值计算有着紧密的联系。
There are close connections between qualitative theories and numerical computation .
-
方法运用常微分方程定性理论进行讨论。
Methods The qualitative theories of ordinary differential equations are used .
-
本文对差分方程定性理论的发展有重要的促进作用。
It will motivate the development of qualitative theory of difference equations .
-
系统可靠度最优布局的一种定性理论
A qualitative theory on the optimum allocation of system reliability
-
定性理论中的奇点分类及其拓扑等价性
Taxonomy and topology equivalence of odd number in qualitative theory
-
对简单压缩波定性理论的质疑
Raising Doubt About the Qualitative Theory of Simple Compression Wave
-
常微分方程定性理论与稳定性理论的哲学思考
Philosophical Reflections on Qualitative Theory and Stability Theory of Ordinary Differential Equations
-
溶剂效应的定性理论及定量研究
The Qualitative Theory and Quantitative Study of Solvent Effect
-
对维数较低的系统特别是二维平面系统,定性理论的研究已取得丰富的结果。
Plentiful results are obtained from systems of lower dimensions , especially from planar systems .
-
其中,我国大型家电企业跨国经营的战略思路为本文重点研究内容。针对上述内容,本文采用定性理论分析、战略模型、数量模型等研究方法。
Theory analysis , statistical model and strategic model are used to study the content .
-
结论常微分方程定性理论可用于研究生物化学反应。
Conclusion The theories of ordinary differential equations can be used to study bio-chemical reaction .
-
中心焦点判定是微分方程定性理论的重要组成部分之一。
The center focus decision problem is an important part of the differential equation theory .
-
常微分方程定性理论在动态裂纹尖端场分析中的应用
Application of the quantitative theory of ordinary differential equations to analyzing a dynamic crack tip-field
-
积分因子在定性理论中的性质及其应用
The Properties and Applications of the Integrating Factor in the Qualitative Theory of Ordinary Differential Equations
-
跳跃运动的定性理论
A qualitative theory of jumping motion
-
用常微分方程定性理论,研究了一类生化系统奇点的性态。
By the theory of ordinary differential equation the singular points of a biochemical system are discussed .
-
而数值计算的结果向定性理论提供了具体和丰富的素材。
At the same time , the results of the numerical computation provide abundant material for qualitative theories .
-
运用微分方程的定性理论,讨论了模型平衡点的渐近稳定性及模型解的一致有界性。
In this paper , the inverse problems of one-dimensional classic scattering and bound dynamical problems are studied .
-
最后,又研究了该问题的时滞相关镇定性理论和跟踪控制问题。
Finally , we studied the delay-dependent stability theory and the tracking control problem of the above systems .