幺正算符
- 网络unitary operator
-
接着,采用幺正算符对系统进行规范变换,将Hamiltonian量变换成Cartan算子的函数;
Secondly , we use a gauge transformation to change the Hamiltonian into a function of the Cartan operators of the dynamical Lie algebra ;
-
利用参量相关的Bogoliubov变换公式对角化Heisenberg反铁磁双子晶格模型哈密顿,得到施行变换的自旋相关的幺正算符和精确本征态。
In this paper , the Parameter dependant formulation of the Bogoliubov transformation is used to diagonalize Hamiltonian of Heisenberg antiferromagnet two sublattice modle , and to derive the spin dependant unitary operator performing this transformation and the exact eigenstates .
-
在量子化的过程中,确立了两种形式的幺正算符,并且找到了使计算简化的最佳形式,实现了对介观电路哈密顿的量子化。
On the process of unitary transformation , we find two kinds of unitary operators and select the best one .
-
故此,在本论文中我们将以联合幺正操作可以实现量子纠缠为主线,探讨一般联合幺正操作算符的纠缠特性。
Therefore , in this thesis , with the fact that the joint unitary operation can generate quantum entanglement in mind , we discuss the operator entanglement of the general joint unitary operation firstly .