张量积
- 网络Tensor product;tensor-product;kronecker
-
带约束条件的张量积Bézier曲面最佳降多阶
The Constrained Optimal Multi-degree Reduction of Tensor Product B é zier Surfaces
-
研究了内部单节点张量积B样条曲面间G1连续的条件。
The G1 continuity conditions between tensor product B-spline surfaces with single interior knots are studied .
-
算子张量积及C2上的初等算子
On the Tensor Products of Operators and the Elementary Operators on C_2
-
Fuzzy结合代数的外张量积
The extra tensor products of Fuzzy Associative Algebras
-
应用代数张量积B样条曲面构造Blending曲面
Blending surfaces with algebraic tensor - product B-spline surfaces
-
假设V作用在有限群的张量积G(?)
Suppose that there is a map V acting on a finite group G (?)
-
〈II〉型三角剖分下非张量积连续小波基的构造
Construction of Non-tensor Product Semi-orthogonal Continous Wavelet Bases for 〈 II 〉 Triangular Partition
-
两相邻张量积Bézier曲面的近似合并
Approximate Merging of a Pair Tensor Product B é zier Surfaces
-
张量积Bézier曲面降阶逼近的新方法
New Method of Approximate Degree Reduction of B é zier Surfaces
-
三角和张量积Bézier曲面间相互转换的新方法
New Conversion between Triangular and Tensor-Product B é zier Patches
-
利用这类小波的张量积及p阶小波基,针对各种不同的平面图象,我们比较了模糊像压缩及阈值压缩的效果。
The effects are compared , when the tensor products of these wavelets are applied to the blur image compression and the threshold compression .
-
基于二维张量积区间B样条小波及小波有限元理论,研究了用于薄板静动力学分析的区间B样条小波有限元法。
The scaling functions of B-spline wavelet on the interval ( BSWI ) were employed to construct the shape functions of finite element .
-
Banach空间上算子张量积的联合谱
On joint spectrum of tensor products of operators on Banach Spaces
-
张量积Bézier曲面的降阶
Degree Reduction of B é zier Surfaces
-
准均匀B样条曲线小波分解与重构的快速算法可以拓广到张量积B样条曲面,而曲面小波分解与重构的快速算法是曲面多分辨造型的关键。
A fast algorithm for wavelet decomposition and reconstruction of quasi uniform bicubic B spline surfaces is a key part of B spline multiresolution modeling .
-
Banach空间的双线性连续映射及其张量积
Bilinear continuous maps and their tensor products of Banach Spaces
-
Banach空间的张量积及其共轭空间
On the tensor product of Banach spaces and conjugate spaces
-
广义的张量积Poisson函数的升阶问题
Degree elevation of generalized tensor - product Poisson functions
-
CAGD中双三次张量积非均匀B样条曲面G~2光滑条件
G ~ 2 continuity conditions in CAGD between two patches of bi-cubic tensor product non-uniform B-spline surfaces
-
根据UEP准则,用二元B-样条函数B(x,y)构造了一个非张量积的紧框架。
Then according to the UEP . we construct a non-product B-spline tight frame by using the bivariate B-spline .
-
在几何造型中,张量积Bernstein多项式具有非常重要的地位。
Tensor product Bernstein polynomials are basic elements in geometric modeling .
-
该文在介绍准均匀B样条曲线小波分解快速算法的基础上,建立张量积B样条曲面多分辨率表示的概念,并用数学形式严格描述曲面小波分解与重构的快速算法。
This paper introduces some basic concepts for multiresolution representation of B spline surfaces and gives a fast algorithm for wavelet decomposition and reconstruction of quasi uniform B spline surfaces .
-
给出了不同输入字符集上两个q自动机张量积的定义,研究了不同输入字符集上两个q自动机的张量积识别的语言。
Tensor product of two automata over the different alphabets is defined in this paper and quantum languages accepted by the tensor product are studied .
-
即利用混合矩阵,可以用与张量积B样条曲面相同的概念框架处理具有非四边界及多于或少于4个四边界面汇聚于一点的非规则控制多面体的曲面拟合。
That is , irregular meshes with non-quadrilateral cells and more or fewer than four cells meeting at a point can be input and treated in the same conceptual framework as tensor-product B-splines .
-
利用张量积构造正则空间,用于场函数逼近,得到MLS(movingleastsquares)场函数插值形式的一个特例。
Normalized space constructed by tensor product was used in field function approach to give a special case of moving least squares ( MLS ) interpolation scheme .
-
A1型Weyl模的张量积及其Ext~1-群
Tensor Products of Weyl Modules and Ext ~ 1-groups for Type A_1
-
李代数的张量积所确定的Leibniz代数
Leibniz Algebras Defined by Tensor Product of Lie Algebras
-
在U≥0的权模范畴中,我们描述了所有单对象和投射对象及其张量积分解。
In the category of weight modules over U ≥ 0 , we describe all the simple objects , the projective objects and the decomposition of their tensor products .
-
矩阵右半张量积的加权Moore-Penrose逆的反序律
Reverse Order Law for the Weighted Moore-Penrose Inverse of a Matrix Right Semi-tensor Product
-
张量积B样条曲面在CAD领域具有重要意义,但是普通张量积B样条曲面的控制顶点必须呈拓扑矩形阵列形式排列,不能满足任意拓扑控制网格的要求。
Tensor-product B-spline surface is of great importance in computer-aided design . However , ordinary B-spline surface , whose control points must be in rectangular topology array , is not suitable for control polyhedron with arbitrary topology .