方向性系数

  • 网络Directivity;directivity factor;directive coefficient
方向性系数方向性系数
  1. 口径天线方向性系数和增益的快速估算方法

    Method of fast estimating aperture antenna directivity and gain

  2. 采用此覆层的光子晶体天线,方向性系数(11.2dB)已经非常接近理论极限(12.0dB)。

    Using this cover , the directivity of the patch antenna ( 11.2dB ) is very close to its theoretical limit ( 12.0dB ) .

  3. 半波振子椭圆环天线阵方向性系数的优化

    Optimum Directivity for Oval Array of a Half Wavelength Dipole Antennas

  4. 曲线振子天线方向性系数的近似计算

    Approximate Calculation of the Directivity of Curvilinear Dipole Antennas

  5. 随机误差对电扫阵列天线副瓣和方向性系数的影响

    The Effect of Random Error on the Sidelobes and Directivity of Phased Array Antenna

  6. 通过实虚空间的概念,分析了扫描中的阵列波瓣,总结给出相控阵天线的方向性系数。

    Using the concept of real and imaginary space , the scanning lobe is researched .

  7. 本论文首先用经典理论对平面阵的辐射场和方向性系数进行分析。

    In this article , array radiation field and the direction coefficient are firstly analyzed using the classical theory .

  8. 简要介绍了天线的性能指标,如方向性系数和辐射效率等。

    The performance indexes for antenna have been presented briefly , such as diversity and radiation efficiency . 3 .

  9. 为了增强天线的方向性系数和增益,以四元天线阵为例,研究了这种天线组成的天线阵的辐射特性,给出了天线阵的三维辐射方向图。

    To improve the directivity and gain of the antenna , an array composed of 4 elements is analyzed .

  10. 本文对均匀直线阵列天线在相控扫描过程中的主瓣宽度和方向性系数进行了估算。

    In this paper , the main valve width and directive gain for uniform linear array of antennas in phased scanning are estimated .

  11. 在达到相同方向性系数的情况下,两种阵列的尺寸均较大程度地小于采用通常方法设计得到的阵列尺寸。

    On the condition of the same directivity , two array size both are greatly less than the array size designed by general approaches .

  12. 计算了其平均功率反射系数、方向性系数和功率谱与等离子体边缘密度和主波导相位差等参数的关系。

    The average power reflection coefficient , directivity , power spectrum are obtained for different edge plasma densities and for different phasings between main waveguides .

  13. 结果表明随着试样宽度的减小,抗拉强度、厚向异性系数减小,板平面方向性系数增大;

    The results show a decrease of tensile strength and mean vertical anisotropy and an increase of plane anisotropy with a decreasing of the width of specimen .

  14. 为同时满足对方向性系数,阵列效率,方向图旁瓣等参数的要求,提出了一种效率和旁瓣约束下的最优方向性综合法。

    In order to satisfy the requirement on array directivity , array efficiency and sidelobe level at the same time , a new pattern synthesis method is presented .

  15. 本文利用天线阵基本原理近似分析了曲线振子的方向性系数,得到了方向性系数随曲线振子长度的变化关系,为曲线振子天线的进一步研究及设计提供参考。

    The directivity of curvilinear dipole is analysed by the basic principle of antenna array , the relationship between the directivity and the length of curvilinear dipoles is obtained .

  16. 导出天线基本参数如功率传输系数,输入电压驻波比,品质因素,辐射场以及方向性系数的表达式,并以功率传输系数为例进行了数值计算。

    The basic antenna parameters are given , for example power transmission coefficient , input voltage standing-wave ratio ( VSWR ), quality factor , radiation field and directivity . The power transmission coefficient is calculated as a numerical example .

  17. 通过对比分析了空气穴的种类与微带天线特性参数的关系,即如何在微带天线中开空气穴才能使微带天线的方向性系数等参数达到最优。

    We analyse the relation between the air points and the parameters of microstrip antenna through comparing , that is , how to make air points in the dielectric layer could make direction coefficient and other parameters of microstrip antenna achieve optimization .

  18. 用矩量法得出了一种平面带线天线元的口径场分布、方向图和方向性系数的数值结果。

    Numerical results of the aperture field , pattern and directivity of a stripline planar antenna element are obtained by use of the moment method .

  19. 本文利用曲线积分的方法,导出了V型偶极子天线在空间任一点处远区场的一般数学表示式以及方向性函数、辐射电阻和方向性系数的计算式。

    In this paper the general formulas on calculating far-field for the Vee Dipole Antenna at the space are derived from method of curvilinear integration and the field pattern , the radiation resistance and the directivity are given .

  20. 导出了用天线方向图的半功率波束宽度快速计算口径天线方向性系数和增益的简单表达式,分析讨论了这些公式的应用范围。

    The simple formulae of fast calculating aperture antenna directivity and gain are derived using antenna beamwidths . Applied range of these formulae are analyzed and discussed .

  21. 我们把阵列综合问题表述为一个约束非线性规划问题,采用新直接法求解该问题即可得出一组使阵列的总方向图满足副瓣指标要求,同时具有尽可能高的方向性系数的激励系数。

    The technique allows one to find a set of array coefficients that yield a pattern meeting a specified sidelobe level with the maximum directivity , if such a set of array coefficients exists .