杂质能级

  • 网络impurity level;Impurity energy level
杂质能级杂质能级
  1. 一种计算载流子占据杂质能级的概率的新方法

    New method of calculating the probability function of carriers occupying the impurity level

  2. 变温实验说明相应发射峰与材料禁带中形成的杂质能级有关。

    It is believed that the emission peaks were concerned with impurity level in the bandgap .

  3. 流体静压力下的Si中的深杂质能级

    Deep Impurity Levels in Silicon under Hydrostatic Pressure

  4. Ce原子掺入后所产生的杂质能级对费米能级附近的能级结构产生了较大影响;

    The impurity levels among the Fermi energy mainly caused by Ce atom .

  5. GaAs中过渡金属深杂质能级的计算

    Calculation on deep impurity levels of transition metals in GaAs

  6. 2)推导出了一个超导判据,说明重掺杂(n型)是半导体获得超导性的必要条件;3)提出了一种测量超导性半导体中费密能级与杂质能级相对位置的新方法。

    A criterion for superconductivity is given and a new method of measuring the Fermi energy level is proposed for semiconductors exhibiting superconductivity .

  7. 利用XPS测试进行机理分析,钝化效果实现是由于氧化剂将氧原子与表面的悬挂键结合,使样品表面的悬挂键密度减少,进而减少杂质能级的密度。

    XPS results were used for further mechanism analysis . The bonding between Ge atom and O atom has reduced the density of dangling bond , which in turn decreases the density of combination energy level and realizes the passivation effects .

  8. 而位于近红外光区的次吸收峰则是由BaO半导体基质中杂质能级的光吸收引起的。杂质能级的产生与超额Ba在BaO晶体中造成的氧缺位有关。

    The other absorption peak is attributed to the transition of bound electrons at the impurity energy level of the BaO semiconductor matrix , and the presence of such an impurity energy level is related to the negative ion vacancies caused by the excess barium in the BaO crystal .

  9. 用光热电离光谱方法研究了硅中硼受主杂质能级在0~11T磁场下的塞曼效应。

    The Zeeman effect of B acceptor in Si was investigated with PTI technique under magnetic field up to 11T with B →∥ K →∥( 100 ) .

  10. 两种类型的无序都将破坏准周期系统的Cantor集合型的能谱结构,但前者会在原有的禁带处产生杂质能级,后者主要引起原有能带轮廓的展宽。

    The results show that the Cantor set structure of electronic spectra in the almost periodic systems is destroyed in both the disordered cases , but Ihe former may - create new impurity levels in the forbidden band , and the latter mainly broadens the original energy bands .

  11. 基于此关系计算了常用的过渡金属离子在金红石相Ti02、Ⅲ-Ⅴ和Ⅱ-Ⅵ半导体以及几种钙钛矿型三元氧化物中的杂质能级。

    Based on this relationship , impurity levels of frequently used transition metal ions in rutile-TiO2 , III-V and II-VI semiconductors and some perovskite ternary oxides are calculated , which are in accordance with available experimental values .

  12. 硅中铂杂质能级的电子辐照效应

    Electron Radiation Effect on Platinum - Related Deep Levels in Silicon

  13. 硅浅杂质能级的低温陷阱效应

    Trapping characteristics of the shallow impurity energy level in silicon at low temperatures

  14. 掺杂半导体中孤立杂质能级的研究

    A study of isolated impurity levels in doped semiconductors

  15. 计算半导体中杂质能级的分区变分方法

    Zone-Variational Method for Calculating Impurity Levels in Semiconductors

  16. 硅中的过渡元素杂质能级

    Deep levels of transition impurities in silicon

  17. 半导体中的杂质能级无限深势阱下杂质量子点的能级计算

    Computation of Electron Energy Levels of a Quantum Dot with an Impurity in the Dot Center

  18. 半导体中的杂质能级

    The impurity energy levels in semiconductors

  19. 硅中的深杂质能级

    Deep Impurity Levels in Silicon

  20. 最后定性地说明了过渡元素杂质能级的化学趋势和一些实验事实。

    Finally , the chemical trend and some experimental facts of transition impurity energy levels are qualitatively explained .

  21. 激发态的影响与温度、掺杂浓度以及杂质能级深度存在密切的关系。

    The influence of excited states relates to temperature , the doping concentration and the depth of energy level of dopants .

  22. 所得杂质能级在带隙中的位置与实验结果基本一致。

    The computed values of the energy levels of the deep impurity in silicon are in good agreement with experimental results .

  23. 提出一种计算掺杂半导体中孤立杂质能级的方法,该方法建立在密度函数理论基础之上。

    Basing on the density-functional theory , the paper presents a method of calculating the isolated impurity levels in doped semiconductors .

  24. 分析结果表明,控制杂质能级和表观杂质激活能由补偿度和杂质浓度决定。

    The analysis results show the determinative level and experimental value of ionization energy are determined from doped concentration and compensation level .

  25. 论文建立了过渡金属离子在无机晶体中的杂质能级与电负性、键长等基本原子或化学键参数之间的定量关系。

    A quantitative relationship was established between impurity levels of transition metal ions in inorganic crystals and basic atomic or bond parameters such as EN and bond length .

  26. 因此,为了更合理的进行材料设计,理解并预测离子在无机晶体中的掺杂行为以及掺杂无机晶体的杂质能级具有重要意义。

    Therefore , in order to design materials more rationally , it is of great significance to understand and predict doping behaviors of ions in inorganic crystals and impurity energy levels of doped inorganic crystals .

  27. 计算结果与实验值符合得较好,这一基于电负性的杂质能级计算公式可以为寻找合适的杂质用于半导体掺杂提供理论上的指导。

    The calculated results agree well with the experimental data . The impurity level calculation formula which established based on electronegativity can be used to provide theoretical guidance in the search of proper impurity atoms for semiconductor doping .

  28. 价带中的电子发生跃迁时,首先会跃迁到能量相对较低的杂质能级,然后再跃迁到导带,导致吸收光子的波长变长,吸收边红移,光学带隙变小。

    During the transition , electrons in valence band firstly transfer to the impurity level in the low energy range and then to the conduction band , inducing longer wavelength of absorbed photon , redshift of the optical absorption edge , and smaller energy band gap .

  29. ZnSe(1-x)Sx中3d过渡金属杂质施主能级

    Donor Levels of 3d-Transition Metal Impurities in ZnSe_ ( 1-x ) S_x Alloy System

  30. 硅中金杂质双重能级俘获&复合载流子的物理图像的统计描述

    A Statistic Description of the Physical Image of Process To Capture & Recombine Carriers for the Twin Levels of Au in Silicon