钌催化剂

  • 网络ruthenium catalyst
钌催化剂钌催化剂
  1. 利用N2物理吸附、CO化学吸附、X射线粉末衍射(XRD)等表征手段对炭载体和钌催化剂进行了一系列表征;

    N_2 physical adsorption 、 CO chemisorption 、 X-ray Diffraction ( XRD ) et al were carried out to characterize the properties of the supports and ruthenium catalysts .

  2. 脱氯和氢解温度对钌催化剂氨合成催化活性的影响

    The effect of dechlorination and hydrogenolysis temperature on the ammonia synthesis activity of ruthenium catalyst

  3. 钌催化剂存在下的氨湿法氧化反应条件与N2选择性

    WET AIR OXIDATION OF AMMONIA OVER RUTHENIUM CATALYST The Reaction Conditions and the N_2 Selectivity

  4. 用于煤气化CO2还原反应的一种催化剂CO2还原钌催化剂的研究

    Study on Ru-based Catalyst Used in Reductive Reaction of CO_2

  5. 担载型钌催化剂吸附CO性能的原位红外研究

    In situ IR studies of CO adsorption and hydrogenation over supported ruthenium catalyst

  6. 碳纳米管负载钌催化剂上氨合成及氨分解的TAP研究

    Ammonia Synthesis on Ru Supported on Carbon Nanotubes and TAP Study of Ammonia Decomposition

  7. 当活性炭具有较低的灰分、适中的pH值以及较大的比表面积和比孔容及适当孔结构分布时,以其为载体的钌催化剂具有较高的活性。

    When the AC has low ash content , proper pH value and pore distribution , high surface area and total pore volume , the catalyst supported on this AC has high activity .

  8. 综述了氮分子在Ru(0001)单晶表面吸附的研究进展,并指出钌催化剂的发展方向。

    Latest researches in Adsorption dissociation of N2 on Ru ( 0001 ) surface were reviewed , and trends in this aspect proposed .

  9. 通过实验研究了反应温度、反应压力、反应时间对苯液相部分加氢制环己烯钌催化剂活性的影响,得到的最适宜反应温度范围为403K~423K;

    The effects of reaction temperature , pressure and reaction time on the activity of ruthenium catalyst for benzene partial hydrogenation were investigated .

  10. 以钌催化剂为基础的KAAP工艺开发成功,每吨氨的生产成本可降低2.2~6.6美元,节能1.20GJ。

    The KAAP process based on Ru-based catalyst saves about the energy consumption of 1.20 GJ and the cost of 2.2-6.6 U.S.dollar per ton ammonia production as compared to the conventionally reduced-energy design on the same basis .

  11. 活性炭载体对钌催化剂制备及其活性的影响

    Influence of activated carbon on activity of ammonia synthesis catalysts

  12. 钌催化剂上苯加氢制环己烯的影响因素

    Influential factors for selective hydrogenation of benzene to cyclohexene over ruthenium catalysts

  13. 第二部分中主要对负载金属钌催化剂的制备以及催化酮的氢化反应作了初步研究探索。

    The preliminary exploration of Ru catalyst is also studied .

  14. 新型水溶性手性钌催化剂的制备及应用

    Synthesis and Application of a New Water-soluble Chiral Ruthenium Catalyst

  15. 苯部分加氢钌催化剂催化活性研究

    Study on the ruthenium catalytic activity for Benzene Partial Hydrogenation

  16. 磁性纳米负载钌催化剂的制备及其催化性能

    Preparation and catalytic property of magnetic supported nano ruthenium particles

  17. 低含量高活性负载钌催化剂合成及苯加氢反应研究

    Preparation of Supported Ru-catalysts with Low-concentration and Catalytic Performance in Hydrogenation of Benzene

  18. 活性炭负载钌催化剂的制备及其氨合成催化性能的研究

    The Preparation and Characterization of the Ruthenium Catalysts Supported on Active Carbon for Ammonia Synthesis

  19. 共聚物配位的钌催化剂及其催化加氢性能研究

    Studies on Ruthenium Catalyst with a Ligand of Copolymer and Its Performance in Catalytic Hydrogenation

  20. 载体研究了不同载体对负载型钌催化剂的影响。

    The effect of supports on the hydrogenation of CO2 of Ru catalysts has been investigated .

  21. 含吡啶配体的钌催化剂合成及在离子液体中开环易位聚合反应

    Synthesis of Pyridyl-based Ionic Liguid Supported Ruthenium Complex and Kinetics of Ring-opening Metathesis Polymerization in Ionic Liguid

  22. 炭载体的预处理对钌催化剂金属分布状态及催化性能的影响

    The effect of pretreatment of carbon support on metal dispersion and activity of ruthenium catalyst for ammonia synthesis

  23. 因此,通常情况下,钌催化剂主要是应用于基础理论研究,成为开发新型费-托合成催化剂的最佳模型对象。

    Thus , Ru catalysts are usually utilized as the model catalysts for the development of promising novel FTS catalysts .

  24. 采用化学还原法制备负载型钌催化剂,进行了苯选择加氢制环己烯。

    A load ruthenium catalyst was prepared via chemical reduction and was used in the selective hydrogenation of benzene to cyclohexene .

  25. 在425℃、13.0MPa反应条件下,钌催化剂的活性比熔铁型催化剂提高了26~30%。

    The catalytic activity of the supported Ru catalyst is 26 ~ 30 % higher than that of Fe catalyst under 425 ℃、 13.0 MPa reaction condition .

  26. 根据不同工况,铁催化剂串钌催化剂生产工艺比单铁催化剂生产工艺氨合成率可相对提高43%~56%。

    Ammonia conversion of iron and ruthenium catalysts in tandem was 43 % & 56 % higher than that of the single iron catalyst , depending on the operation condition .

  27. 具有高纯度、高比表面、大孔容及合理孔分布的活性炭载体有利于活性组分有效均匀的分散,制备出高活性的氨合成钌催化剂。

    The high purity , high surface area , large pore volume and proper pore structure of active carbon as a support for ruthenium catalyst usually lead to high catalytic activity for ammonia synthesis .

  28. 铁催化剂串钌催化剂工艺的氨合成率同样随着钌催化剂装量的增加而增加,比单铁催化剂的氨合成率提高27.7%~58.8%。

    Similarly , ammonia conversion was higher than that of the single iron catalyst by 27.7 % & 58.8 % and increased with increasing ruthenium catalyst loading in tandem with iron catalyst under laboratory condition .

  29. 结果表明,钌催化剂应在低于500℃条件下使用,还需要将活性炭载体进行石墨化处理,以增强炭载体和钌催化剂的稳定性。

    The preparation process and the feasible or limited application condition of Ru catalyst were investigated . The result showed that the catalytic reaction of Ru catalyst for ammonia synthesis was carried out below 500 . It is important of improving the stability of carbon support by heading treatment .

  30. 功能化MCM-41固载的钌基催化剂上二氧化碳加氢合成甲酸

    Carbon dioxide hydrogenation catalyzed by ruthenium complexes immobilized on MCM-41