代数数论

dài shù shù lùn
  • Algebraic number theory;algebraic theory of numbers
代数数论代数数论
  1. PARI是快速运行的符号函数C语言库,用于因素分解、代数数论、椭圆曲线、矩阵和超越函数。

    PARI is a fast-running C library of symbolic functions for factorization , algebraic number theory , elliptic curves , matrices , and transcendental functions .

  2. 代数数论中若干定理的简化证明

    Simpler proofs of some theorems in algebraic number theory

  3. 十九世纪的代数学知识体系庞大,它包含置换群、矩阵、代数数论、代数几何等多个分支。

    In the nineteenth century , the system of algebraic knowledge is enormous , which contains the permutation group , matrix , algebraic number theory , algebraic geometry and other branches .

  4. 理想概念是现代抽象代数学特别是交换环理论最核心的概念之一,也是研究代数数论学科必不可少的基本工具。

    Ideal is one of the most important concepts in abstract algebra , especially the theory of commutative ring . It is also an indispensable basic tool to study algebraic number theory .

  5. 不取范而直接给出关于整理想加群结构定理的证明,从而简化了代数数论中这两个重要定理的证明。

    We now complete directly the two proofs neither turning to the formula of transitivity of norms nor taking the norm of an ideal , thus simplifying the proofs of the two important theorems in algebraic number theory .

  6. 代数,数论,费尔马大定理等介绍。

    Algebra , Number Theory , Fermat 's Last Theorem , etc.

  7. 它由两个方面发展而来,代数几何和代数数论。

    It has developed from two sources : algebraic geometry and algebraic member theory .

  8. 环论作为一门重要的代数学科,它是代数几何和代数数论的基础。

    As an important algebraic subject , Ring theory is the base of Algebraic Geometry and Algebraic Number Theory .