代数表示论

代数表示论代数表示论
  1. quiver在代数表示论中起着非常重要的作用。

    Quivers have played an important role in the representation theory of algebras .

  2. 本文讨论NMR波谱与李代数表示论之间的联系及NMR波谱解析的李代数方法中的基本问题。

    In this paper the relationship between NMR spectra and Lie algebraic representation , the basic problems in Lie algebraic methods for analysing NMR spectra arc discussed .

  3. 代数表示论的某些新进展

    Some New Advances in the Representation Theory of Algebras

  4. 代数表示论简介与综述

    An Introduction and Survey on Representation Theory of Algebras

  5. 几乎可裂序列是研究代数表示论的一个有力工具。

    The almost split sequence is an important instrument in research of the representation theory for algebra .

  6. 代数表示论是上世纪七十年代初兴起的代数学的一个新的分支,它的基本内容是研究环与代数的结构。

    Algebra representation theory is a new algebraic branch arising in 1970s whose researches mainly focuses on rings and algebraic structures .

  7. 代数表示论的引入不仅给这些领域的研究带来了新的观点和方法,同时也得到了一些新的代数。

    Not only the application of the representation theory provides new insight and approach into these areas , but also gets many new algebras in the same time .

  8. 代数表示论主要研究有限维代数的结构、不可分解表示和模范畴的构造。

    Representation Theory of Artin Algebras is a subject in which one mostly studies structures of finite dimension algebras , indecomposable representations and global construction of module categories .

  9. 代数表示论则是兴起于二十世纪七十年代的一个重要数学分支,主要研究有限维代数的结构,不可分解表示和模范畴的构造。

    As an important branch of mathematics , the theory of representation of algebras was developed in the seventies of the twentieth century and mainly studies the structure of finite-dimensional algebra , indecomposable representation and the construction of module category .

  10. 因而模的包络、复盖理论在环模理论、同调代数和代数表示论中都有着非常重要的作用。

    The theory of envelopes and covers takes an important part in theory of rings and modules , homological algebra , representation theory of algebras and so on .

  11. 判定代数表示型是代数表示论中的一个重要课题。

    Determination of representation type of algebras is an important task in representation theory of algebras .

  12. 1990年,Ringel引入了Ringel-Hall代数,这类代数提供了用表示论来研究李代数和量子群的新途径。

    Ringel introduce a new algebra which is called Ringel-Hall algebra in 1990 . These algebras provide a new approach into the studying for Lie algebra and quantum group .