同伦等价
- 网络homotopy equivalent;Homotopy equivalence
-
同胚映射和同伦等价是代数拓扑学中的两个重要概念。
To learn English Homeomorphic morphism and homotopy equivalence are two important concepts in the theory of algebraic topology .
-
定理2K1是En的一维连通无闭道复形,K2是En的一维连通有闭道复形,则K1与K2不同伦等价;
Theory 2 ; If K1 is one dimensional connect with no closed path complex simple , K2 is one dimensional connect with a closed path complex simple , then K1 , K2 are not homotopy equivalence .
-
关于自同伦等价群ε(co-H)(SX)的有限生成性
The Finitely Generated Property of ε _ ( co-H )( SX ) of Self-homotopy Equivalences
-
co-H-空间上自同伦等价群的若干结果
Some Results of Self-Homotopy Equivalence Groups of co-H-Spaces
-
拓扑和的自同伦等价群
The Group of Self-Homotopy Equivalences of Wedge Spaces
-
本文中,我们有结论:对于束Bm,sharp边同伦与delta顶点同伦是等价的。
In this paper , we have this result : For a bouquent Bm , sharp edge-homotopy and delta vertex-homotopy are equivalent .
-
作为这个结论的一个主要应用,我们有以下的定理:对于D3,有△-同伦、delta顶点同伦和边同伦是等价的。
As a main application of this result , we have the following theorem : For spatial graph C_3 ,△ - homotopy 、 delta vertex-homotopy and edge-homotopy are mutually equivalent .
-
为此,我们将同伦理论中的有关结果整理成同伦等价变换不变性定理,以作为这方面的理论基础。
As the corresponding theoretical basis we restate the concerned results in homotopy theory as a theorem and call it the invariance theorem for homotopy equivalence transformation .
-
目的在点标道路连通CW空间的同伦范畴中,引进覆叠同伦正则态射的概念,研究它存在的条件、性质以及它与覆叠同伦单(满)态和覆叠同伦等价之间的关系。
Aim To define covering homotopy regular morphism in the homotopy category of pointed path-connected CW-spaces . To discuss its existence conditions , properties and the close relationships to covering homotopy monomorphism ( epimorphism ) and covering homotopy equivalence .