应变硬化指数

yìnɡ biàn yìnɡ huà zhǐ shù
  • strain hardening exponent
应变硬化指数应变硬化指数
  1. 通过分析含轴向内部裂纹圆筒的h1~n曲线,给出了这种裂纹体的标准载荷和关于应变硬化指数的拓宽范围内的估算公式。

    Through the analysis of h_1 ~ n curve for cylinder with an internal axial crack , this paper determines the normalised load for this cracked body , and gives the estimation formula of strain hardening exponent in a widened interval .

  2. 借助两种不同的方法,测定了冷轧薄板的应变硬化指数(n)、塑性应变比(r)值和伸长率。

    The strain hardening exponent ( n ), plastic strain ratio value ( r ) and elongation of the cold rolled thin shect have been measured by two different methods .

  3. 应变硬化指数n值的测定和应用

    Measurement and application of tensile strain hardening exponent n - values

  4. 厚向异性值r及应变硬化指数n对板料拉深成形性能的影响

    An analysis of the influence of normal anisotropy r and strain hardening exponent n on the drawability of sheet metals

  5. 因此TRIP钢硬化率、应变硬化指数与传统方式定义的硬化率、应变硬化指数有本质不同。

    Therefore , the hardening rate and strain hardening exponent of TRIP steels are distinguished from those defined in traditional manner .

  6. 本文将无量钢系数Cm作为应变硬化指数H和温度的函数加以分析,并进一步给出了Cm值随m变化的趋势。

    As a dimensionless function of the strain hardening exponent H and of temperature , the C_m values are analyzed and computed , and variations of C_m along with m values also given .

  7. 按GB/T5028-1999标准规定的应变硬化指数(n值)方法进行测试和计算,则其中数据的分析和计算非常繁琐且容易出错。

    According to the standard of metallic materials-sheet and strip-determination of tensile strain hardening exponent ( n-values )( GB / T5028-1999 ), the data analysis is very complex and easy to make mistakes .

  8. 进行三种ST钢的应变硬化指数n值试验,分析试验结果,研究n值在整个应变区间的变化趋势。

    This paper has studied the changes about tensile strain hardening exponent ( n-value ) in three kinds of ST steels by testing n-value s and found changing tendency of them .

  9. 基于此模型,研究了零件张角、翻边部分初始长度以及材料各向异性参数和应变硬化指数对V型零件翻边的影响。

    Based on the model , effects of flange angle , initial flange length , strain hardening exponent and normal anisotropy coefficient on the flanging of V-shaped part were unveiled from the calculated result .

  10. 通过对应变硬化指数n值的测定与影响因素的探讨,阐明了应变硬化指数n值可作为评价汽车专用薄板成形性的一个重要参数。

    This paper describes the measurements of tensile strain hardening exponent ( n-values ) and studies the related factors . The conclusion is that tensile strain hardening exponent n-values is the important figuration parameter of sheets specifically used for automobile .

  11. 对于Si过剩的合金,提高合金中Mg和Si的质量比和Mn含量会使其强度升高,延伸率、应变硬化指数、塑性应变比和埃利克森值被降低。

    For Si alloys excess , the strength is enhanced , and the specific elongation , strain hardening exponent , plastic strain ratio and Erichsen value , are decreased with Mg and Si mass ratio and Mn content increasing .

  12. 拉伸变形应变硬化指数的理论和实验规范

    Theoretical and experimental standardization of strain hardening index in tensile deformation

  13. 拉伸应变硬化指数的解析测定及力学分析

    Analytical measurement and mechanical study on the tensile strain hardening exponent

  14. 相变诱发塑性钢的应变硬化指数计算模型

    Strain Hardening Exponent Calculating Model for Transformation Induced Plasticity Steels

  15. GB/T5028-1985金属薄板拉伸应变硬化指数(斜值)试验方法

    Metallic sheets & Tensile strain hardening exponents ( n-values ) test method

  16. 金属薄板带应变硬化指数和厚向异性指数测定方法

    Strain hardening index and thick anisotropy index of thin metal plate and strip

  17. 球形压痕法评价材料屈服强度和应变硬化指数的有限元分析

    FEA of evaluating material yield strength and strain hardening exponent using a spherical indentation

  18. 两种方法测定冷轧薄板应变硬化指数、塑性应变比值和伸长率的结果比较

    Comparing the results of strain hardening exponent , plastic strain ratio value and elongation by two different methods

  19. 热&机械疲劳时的循环应变硬化指数,大于上限温度的等温循环应变硬化指数。

    The cyclic strain Hardening exponent under thermal-mechanical cycling was greater than that of isothermal cycling at the upper limit of the thermal-mechanical cyclic temperature range .

  20. 同时相关计算表明电流辅助激光焊接可降低接头应变硬化指数,从而改变接头断裂方式。

    On the other hand , electric current supported laser welding can reduce the strain hardening index of the weld joint , and change the fracture mode .

  21. 应变速率增加,流变应力增大,塑性和应变硬化指数无显著改变。

    It is shown by the results that the flow stress increases while plasticity and strain hardening exponent remain approximately constant with the increasing of strain rate .

  22. 结果表明:在整个疲劳过程中,材料的硬度、屈服应力、弹性模量和应变硬化指数等细观力学性能均服从正态概率分布。

    It is shown that during the whole process of fatigue , the meso-mechanical parameters such as the hardness , elastic modulus , yield stress and strain hardening exponent appear normal probability distributions .

  23. 随着回火温度的升高,残留奥氏体分解,4.92%Ni钢的屈强比升高,应变硬化指数和伸长率均下降。

    With increasing the tempering temperature , volume fraction of retained austenite in 4.92wt % Ni steel decreases , the yield ratio of 4.92wt % Ni steel increases , and the elongation and strain hardening exponent decrease .

  24. 基于双向塑性拉伸失稳条件,对幂硬化金属材料,揭示出理论塑性拉伸失稳载荷与材料的强度系数成正比,而与材料应变硬化指数的大小无关。

    Based on condition of biaxial tension instability , this paper reveals that strain-hardening exponent of sheet metals has no influence on the theoretic tensile instability pressure , and the instability pressure is positively proportional to the strength coefficient of materials .

  25. 在板料的冲压成形过程中,应变硬化化指数n和厚向异性系数r是两个重要的材料力学参数。

    Strain hardening index n and coefficient of normal anisotropy r are two important mechanics parameters of materials in the stamping process .

  26. 研究结果表明:Al2O3k/Al多孔材料的能量吸收能力与屈服强度、平台段应变和应变硬化指数有关。

    The results are as follows : the energy absorption capacities of Al2O3k / Al porous composites mainly lie on the yield strength , the length of the collapse plateau region and the strain hard exponent .

  27. 对不同应变范围的应变硬化指数的分析可以发现,残余奥氏体的变形诱发相变行为对材料的应变硬化行为有显著影响。

    Further analysis on the relationship between strain-hardening index and deformation-induced transformation of retained austenite proves that the transformation of retained austenite during deformation makes remarkable influence on their work-hardening behavior .

  28. 而其能量吸收效率则受上下屈服强度之比、屈服应变与密实化应变之比、弹性模量和应变硬化指数之比影响。

    The energy absorption efficiencies are dependent on the ratio of upper yield strength to lower yield strength , the ratio of the yield strain to the densification strain , and the ratio of the elastic module to the strain hard exponent .