康托尔集
- 【物】Cantor set
康托尔集
-
关于康托尔集
A discuss of Cantor set
-
性能基准测试程序的程序行为周期性表现为一种群聚性,而康托尔集也具有这一特性,使用康托尔集的构造过程可以近似模拟程序的行为特性。
Since the cantor set has the cluster property , it can be used to simulate the same cluster property of program behaviors .
-
该策略将分形理论应用到微体系结构模拟中,使用三分康托尔集的构造过程进行详细模拟指令段的选择。
It applies the fractal theory in micro-architecture simulation . It selects the instructions for detail simulation according to the construction procedure of trisection cantor set .
-
本文以科赫曲线与康托尔三分点集为例,讨论了有规分形维数的计算;
Regular Fractal Dimension Calculation is discussed by using Koch Curve and Cantor Ternary Set .
-
由此得知:1.康托尔为了对无限集进行分类提出连续统猜想时间上是合理的;
The conclusions are drawn as follows : 1.The time when Cantor raised the Continuum Problem is suitable ;