矩阵论

  • 网络Matrix Theory;THEORY OF MATRIX;The Theory of Matrices
矩阵论矩阵论
  1. 二十世纪六十年代,美国矩阵论专家Marcus研究了秩1保持这一核心问题,1991年M。

    After that , in the 1960s , American matrix theory expert Marcus had studied the core problem of preserving rank one .

  2. Minkowski不等式是经典的不等式之一,它在几何、最优化控制、矩阵论、算子理论、函数等各方面都有重要的应用。

    Minkowski inequality is one of the classical inequality , it has important applications in geometry , optimal control , matrix theory , operator theory , function and so on .

  3. 本文利用矩阵论的方法研究Hausdorff矩问题。著名矩阵论学者R。

    Using the theory of matrices , this paper discusses the Hausdorff moment problems .

  4. 以矩阵论的相关理论为依据,论证在不同的坐标系下,应力张量满足相似变换的特性;并通过Ansys有限元分析软件与Matlab数值计算软件构建实验平台对此加以验证。

    Based on the theory of matrix , this paper focuses on the similarity of stress tensor in different coordinate systems and then an instance performed by Ansys and Matlab is given to validate this conclusion .

  5. 矩阵论中矩阵的分解是很重要的内容。本文借助于矩阵的Jordan标准形给出一种方阵分解为二对称阵之积的初等证明方法。

    In this Paper , is Given the elementary method of proof about the factorization of a square matrix into two symmetric matrices in Matric Thoery The basis is the Jordan 's normal form .

  6. 本文给出了一种不利用李群论,而仅凭微分流形和矩阵论的一些基本知识便能算出dim(O(n;R))的方法。

    This paper gives a method by which we can calculate the dim ( O ( n ; R )) . The method is obtained only by using basic knowledge of differential manifold and matrix theory , but without using Lie group Theory .

  7. 为进一步研究一类混沌系统的完全同步问题,针对非扩散Lorenz系统,以矩阵论和Lyapunov稳定性理论为基础,提出了一种线性双向耦合的全局混沌同步方案。

    The problem of complete synchronization for a kind of chaotic system is discussed . Considering the diffusionless Lorenz system , a linearly bidirectional coupled global chaos synchronization scheme is proposed based on the Lyapunov stabilization theory and matrix theory .

  8. EIT技术的理论基础实质上是数学物理的反问题,如何求解EIT重建方程涉及到偏微分方程、有限元理论、数值计算、矩阵论、非线性方程组求解、病态问题、误差分析等领域。

    As an Inverse Problem of Mathematical Physics , how to solve it involves Partial Differential Equations , Finite Element Method , Numerical Analysis , Matrix Theory , Nonlinear Equations , Error Analysis , Ill-posed Problem , etc.

  9. 立体矩阵论初步(Ⅱ)&单位体阵与体阵的逆

    Foundations of Cuboidal Matrix Theory (ⅱ) & Identity Matrix and Inverse Matrix

  10. 矩阵论几个基本定理的新证明

    The New Proof of Basic Theorems in Theory of Matrix

  11. 基于矩阵论的空间相似变换分析

    Analysis of Spacial Similarity Transformation Base on Theory of Matrix

  12. 基于矩阵论的智能建筑集成系统多维空间描述

    Multi-Dimensional Space Description of Intelligent Building Integration System Based on Matrix Theory

  13. 在这些模型讨论中主要运用矩阵论等经典的数学方法,并得到了许多好的结果。

    We mainly apply matrix to the model , and get some good answer .

  14. 方法利用组合论和矩阵论方法。

    Methods By combinatorial and matrix theoretical methods .

  15. 与经典插值问题相关的矩阵论

    Matrix theory associated with classical interpolation problem

  16. 图论在矩阵论中的一个应用

    The Application of Graph Theory to Matrix

  17. 本文提出示例学习的一种计算理论,扩张矩阵论。

    A computational theory of learning from examples , extension matrix theory , is presented .

  18. 算子补问题不仅是一种深入学习,研究矩阵论和算子理论的途径,而且它有着广泛的应用背景。

    Operator completion problems provide an excellent mechanism to understand matrix structure and operator theory more deeply .

  19. 线性代数,多重线性代数与矩阵论论著者的学术群落

    On the Paper Author Academic Group of Chiness Linear and Multilinear Algebra and Matrix Theory Investigate and Analyse

  20. 本文利用矩阵论的方法讨论截断矩问题,无穷矩问题以及带不等号的矩问题。

    The truncated moment , infinite moment and inequality moment problems are discussed by using the theory of matrices .

  21. 近几十年,线性保持问题已经成为矩阵论中最活跃的课题之一。

    In past decade , linear preserver problem has been one of the most active subjects in matrix theory .

  22. 模式识别是研究分类识别理论和方法的科学,在理论上涉及到代数学、矩阵论、概率论、图论、模糊数学、最优化理论等等众多学科的知识,其内涵可概括为信息处理、分析、决策。

    Pattern recognition theory comes down to algebra , matrix theory , probability theory , graph theory , fuzzing mathematics and optimization theory .

  23. 近几十年来,保持问题已成为国际矩阵论研究中一个十分活跃的领域。

    During the past few decades , one of the very active research areas in matrix theory is the study of preserver problems .

  24. 近代数学的一些学科,如代数结构理论与泛函分析可以在矩阵论中寻找到它们的根源。

    Some subjects of modern mathematics , such as the algebraic structure theory and functional analysis , would be found in the Matrix theory .

  25. 本文试图以马克思主义劳动价值理论为指导,以矩阵论为工具,描述了制订商品基础价格的全过程;

    This Paper tries to describe the whole process for deter-mining the base prices of commodities with matrix theory , guided by Marxi t theory of labour value .

  26. 这些课题不能说是完全无遗漏的,但可以看到各领域的研究人员用随机矩阵论所做的工作。

    The topics represented are by no means exhaustive but are meant to be indicative of the work done by researchers in diverse communities involving random matrix theory .

  27. 作为这门课程设计作业的一部分,我们鼓励学生探索随机矩阵论更深更细的应用领域。

    As part of the project assignment for this course , students are encouraged to explore an area where random matrix theory has been applied in greater detail .

  28. 本文指出文的定义及性质均是矩阵论中已有定义及已知性质,并进一步探讨了矩阵的直积的一些新的性质。

    In this paper , we point out the definition and nature in [ 1 ] has already been solved and give some nature for kronecker product of matrix .

  29. 本文主要的内容为概述组合矩阵论的发展,介绍一些基本知识,以及本原矩阵的三种类型的广义指数。

    The main content of this article summarizes the development of combinatorial matrix theory , introduces some basic knowledge of it , and three kinds of generalized exponents of boolean matrix .

  30. 而且在线性保持问题的研究过程中,发现了大量的一般化的处理方法以及特殊技巧,这些方法技巧为矩阵论的研究做出了突出贡献。

    And during the process of researching linear preservers , researchers have obtained lots of general methods and special skills , which make a great contribution to the research on matrix theory .