简单立方结构

简单立方结构简单立方结构
  1. 本文采用Born势和简单立方结构计算了层状材料的晶格比热。

    We calculate the lattice heat capacity of layered material based on a simple model with cubic structure and Born potential .

  2. 实验结果表明:Co薄膜具有简单立方结构和沿膜面的易磁化方向;

    The experimental results indicate that , a simple cubic structure and an easy direction along the plane of the film exist in the Co film ;

  3. 根据预峰的特性,提出了Mg70Zn30熔体的结构模型,即Mg原子位于中心,8个Zn原子位于顶角所形成的简单立方结构模型。

    According to the characters of the pre peak , an atomic model of Mg 70 Zn 30 melt was constructed , namely , a bcc structure with one Mg atom locates at the center and other eight Zn atoms lie on the vertexes .

  4. 利用MonteCarlo方法模拟了简单立方结构磁性薄膜的自旋重取向行为,重点研究了磁各向异性和偶极相互作用对系统自旋取向的影响。

    The spin reorientation of magnetic thin film on a simple cubic lattice is simulated by employing Monte Carlo method . The influence of the magnetic anisotropy and the long-range dipolar interaction on the spin configurations of the system is also studied in detail .

  5. 相同制备条件下,体心结构的空心球多孔材料的相对密度、抗压强度和弹性模量均高于简单立方结构多孔材料;

    Compared to simple cubic lattice , body-centered cubic hollow sphere foams have higher relative density , stress and modulus .

  6. 相对密度相同时,体心立方结构多孔材料的抗压强度与弹性模量分别比简单立方结构提高了11.2%和2.2%。

    Under the same relative density , body-centered cubic hollow sphere foams were 11.2 % and 2.2 % larger than simple cubic lattice in stress and modulus .