粘弹性材料

  • 网络viscoelastic material;visco-elastic material;VEM
粘弹性材料粘弹性材料
  1. 由于柱塞冲压挤出成型工艺与常规方法相比具有特殊性,因此能够用于加工聚四氟乙烯(PTFE)和超高分子量聚乙烯(UHMWPE)等高粘弹性材料。

    The process of Ram-punch extruder is developed in recent years . It 's applied in the produce of PTFE , UHMWPE and so on , which are high viscoelastic materials .

  2. 应用损伤粘弹性材料积分型本构关系和Timoshenko梁的假设,在有限变形条件下,给出了粘弹性基础上损伤粘弹性Timoshenko梁运动微分方程组。

    From convolution-type constitutive equations for linear viscoelastic materials with damage and the hypotheses of Timoshenko beams with large deflections , the differential equations of motion governing nonlinear dynamical behavior of Timoshenko beams with damage on viscoelastic foundation are given .

  3. 分数阶Kelvin粘弹性材料的力学特性研究

    Mechanical Properties of Viscoelastic Materials Described by Fractional Kelvin Model

  4. 分析粘弹性材料结构的振动,通常采用积分-微分形式的运动方程,有别于结构动力学中经常采用的KCM形式的运动方程。

    Unlike the K-C-M form of motion equations used in common structural dynamic analysis with visco-damping , integral-differential equations are usually used to describe the vibration of a visco-elastic structure .

  5. LASIK手术中,当30%整体角膜厚度的基质激光消融时,角膜仍维持其粘弹性材料特征。

    Cornea will still maintain its viscoelastic property even if30 % of its total thickness was ablated by LASIK .

  6. 动态力学分析(DMA)是研究粘弹性材料在周期性变化的应力(或应变)作用下的力学行为,是研究沥青粘弹性能的重要手段。

    Dynamic mechanical analysis ( DMA ) is the method to study the viscoelastic properties of asphalt under cyclic stress and strain .

  7. 为了研究黏性效应作用下的界面动态扩展裂纹尖端渐近场,建立了刚性-粘弹性材料界面II型动态扩展裂纹的力学模型;

    A mechanical model of dynamic growing interfacial crack of mode II between rigid material and viscoelastic material was established in order to investigate viscous effect in dynamic growing interfacial crack-tip asymptotic field .

  8. 将电流变材料处理为粘弹性材料,采用了线性粘弹性理论,基于夹层梁动力学分析方法,利用广义Hamilton原理,推导了电流变层合梁的动力学方程。

    Based on the linear visco elasticity theory , a variational mathematical model was developed using Hamilton 's principle to describe the dynamics of ER sandwich beams .

  9. 利用ADINA大型非线形有限元程序中提供的粘弹性材料模型,将阻尼器部分用8节点三维实体单元来进行模拟。

    、 Using the viscoelastic material model in ADINA program to simulate the dampers with 3D element of eight nodes .

  10. 利用积分变换方法建立了粘弹性材料扁球壳在均布荷载作用下的Laplace相空间中的屈曲控制方程。

    Applying the method of integral transform , the governing equation of viscoelastic shallow spherical shell under actions of uniform pressure in the space of Laplace is established .

  11. 给出了确定粘弹性材料本构关系的GHM模型各参数的简便方法。

    A new method for determining all parameters of GHM model is presented .

  12. 分析了分数阶算子对湍流速度场的不规则起伏、Brown运动和粘弹性材料记忆性等经典力学和线性物理问题的挑战。

    It was pointed that the problems of classical mechanics and linear physics , such as stochastic fluctuation of turbulence velocity fields , Brown motion , memory of viscoelastic material , face the challenge of fractional operator .

  13. 利用粘弹性材料的三维分数导数型本构关系,建立了粘弹性Timoshenko梁的静、动力学行为研究的数学模型。

    The equations governing the quasi-static and dynamical behavior of a viscoelastic Timoshenko beam are derived . The viscoelastic material is assumed to obey a three-dimensional fractional derivative constitutive relation .

  14. 从粘弹性材料的Boltzmann迭加原理和带空洞材料的线弹性本构关系出发,给出了一种具有广义力场的损伤粘弹性材料的本构模型;

    From the Boltzmann 's constitutive law of viscoelastic materials and the linear theory of elastic material with voids , a constitutive model of generalized force fields for viscoelastic solids with voids is given .

  15. 从考虑损伤的粘弹性材料的一种卷积型本构关系出发,建立了在有限变形下损伤粘弹性Timoshenko梁的控制方程。

    From a convolution type constitutive model of viscoelastic solids with damage , this paper established the equations governing the static-dynamic behaviors of viscoelastic Timoshenko beams with damage under finite deflections .

  16. 在频域内,夹心粘弹性材料的频率相关性采用复模量模型来模拟,进而利用快速傅立叶变换技术(FFT),得到时域内复合夹层梁的瞬态响应分析结果。

    The complex modulus model that is convenient to integrate with SFEM in frequency domain is used to represent the frequency-dependent property of core viscoelastic materials . The response of sandwich beams in time domain is obtained using fast Fourier transform techniques .

  17. 作者运用一种Lattice-Model(大尺度分子动力学模型),研究了粘弹性材料中动态裂纹扩展的振荡行为。

    The oscillating behavior of dynamic crack propagation in hyperelasticity material is explored using an advanced Lattice-Model .

  18. 本文从Volterra-Fréchet一维积分型本构方程出发,推导得出了一般非线性粘弹性材料的微分型本构方程。

    In this paper , the constitutive equation for general nonlinear viscoelastic material in differential form was deduced from the Volterra-Frechet one in integral form for an one-dimensional case .

  19. 提出了描述非线性粘弹性材料微损伤演化的两类内变量,一类是描述粘性耗散的内变量,它服从Onsager原理;

    Two kinds of intrinsic variable , the intrinsic variable of viscosity dissipation and that of damage dissipation , are introduced to express the dissipation in non linear viscoelastic materials .

  20. 首先从热粘弹性材料的各向同性本构方程出发,利用Laplace变换方法,引入薄板的结构函数与热函数,建立了薄板热振动的数学模型。

    Based on the isotropic constitutive equation of thermoviscoelastic materials a mathematical model for thermal vibration of thin viscoelastic plates is set up by use of the " structural function " and the " thermal function " of the plate introduced by the Laplace transformation method .

  21. 论文将粘弹性材料的GHM模型与工程上常用的有限元方法结合在一起,通过引入耗散坐标,避免了反复迭代求解模态参数及响应。

    The GHM model of viscoelastic material is combined with the finite element method , rendering unnecessary the iterations for calculating modal parameters and responses as usually done in common methods .

  22. 在小变形情况下退化为经典的广义Maxwell粘弹性材料。用并联的Maxwell模型模拟的理论应力弛豫曲线与实验数据能够很好地吻合。

    The model can be seen as a generation of the generalized Maxwell model from one dimension small deformation to three dimension large deformation case . The theoretic stress relaxation curves derived from the parallel Maxwell model gave a very good fit to the experimental data for all vulcanizates .

  23. 基于Kelvin粘弹性材料本构模型,研究小曲率粘弹性索在窄带随机激励作用下的非线性随机稳定性及均方响应·首先建立小曲率粘弹性索数学模型;

    The non_linear planar mean square response and the random stability of a viscoelastic cable that has a small curvature and subjects to planar narrow band random excitation is studied . The Kelvin viscoelastic constitutive model is chosen to describe the viscoelastic property of the cable material .

  24. 本文采用复模量模型模拟夹层粘弹性材料特性的频率相关性,并基于大型通用有限元程序NASTRAN,提出采用模态应变能迭代法及复特征值迭代法求解复合夹层结构的各阶频率及损耗因子。

    In this paper , we describe the frequency-dependent property of viscoelastic materials using complex modulus model , and based on NASTRAN , iterative modal strain energy method and iterative complex eigenvalue method are presented to solve the frequency and loss factor of sandwich structures .

  25. 不同于通常的Lattice-Model,该模型中考虑到了粘弹性材料的非局域效应,即计算了离散元第二近邻的贡献。

    Different from the traditional Lattice-Model , the nonlocal effect of material response is considered by means of including the influence of the next to nearest neighbors of the discrete elements .

  26. 分数算子描述的粘弹性材料的本构关系研究

    Study on Constitutive Relation of Viscoelastic Material Described by Fractional Operator

  27. 聚苯乙烯和聚丙烯缓冲包装材料都是粘弹性材料。

    Polystyrene and polypropylene buffering packaging material are all viscoelastic material .

  28. 刚性一粘弹性材料界面Ⅱ型裂纹准静态扩展的渐近解

    Asymptotic Solution to the Rigid-Viscoelastic Bi-material Mode - ⅱ Interfacial Crack

  29. 中高频段下的粘弹性材料声学参数测量

    Acoustic parameters measurement of viscoelastic material in median and high frequency

  30. 在多种频率下工作的粘弹性材料的应力应变关系

    Relation between stress and strain of viscoelastic material working under multi-frequency