不动点理论

  • 网络fixed point theory;Fixpoint Theory;snap-back repeller theory
不动点理论不动点理论
  1. Banach空间的几何常数及其在不动点理论中的应用

    Geometric Constant of Banach Space and Application in Fixed Point Theory

  2. Banach空间X的许多几何性质在不动点理论中都具有重要的作用,1997年,GarciaFalset证明了当R(X)<2时,Banach空间X具有不动点性质。

    In Banach spaces , there are many geometric properties that play important roles in fixed point theory . In 1997 , Garcia-Falset proved that when R ( X ) < 2 , a Banach space has X the fixed point property .

  3. 本文主要研究P型空间的不动点理论。

    The aim of the paper is to investigate fixed point theorems in P-spaces .

  4. 本文主要分两部分,第一部分主要研究Banach空间的非线性算子半群的不动点理论。

    This thesis is devoted to the study of the fixed point theory and the ergodic theory of nonlinear operators in Banach spaces . It has two main chapters .

  5. 通过构造一个特殊的算子,利用锥拉伸和锥压缩不动点理论,研究了Banach空间中一类奇异脉冲微分方程边值问题的正解及多重正解的存在性。

    Using the fixed point theorem on cones , some results are obtained on the existence of at least one and multiple positive solutions for nonlinear singular impulsive boundary value problems in Banach space .

  6. 通过构造Lyapunov函数、利用不动点理论和一些分析技巧,获得了分析时滞多向联想记忆神经网络模型周期解的存在性及全局指数稳定性。

    Also , by constructing Lyapunov functionals , using of fixed point theorem and some analysis techniques , the existence and global exponential stability of the periodic solution for MAM networks with distributed delays are discussed .

  7. 不动点理论及Mazur-Ulam等距定理的一些探讨

    On Some Fixed Point Theorems and the Mazur-Ulam Problem

  8. 应用锥拉伸和锥压缩不动点理论讨论了有关p-Laplacian算子的二阶微分方程奇异边值问题多个正解的存在性。

    The existence of multiple positive solutions is studied for the second order singular boundary value problems with a p-Laplacian operator , by using the fixed theory in cone .

  9. 利用变分原理和Morse理论不同于通常的不动点理论研究了一类带参数非自治的二阶常微分方程边值问题的多重解。得出了此类方程存在3个解的充分条件。

    By means of variational structure and Morse theory , which differs from common methods of fixed point theory , triple solutions of boundary value problems for a class of second-order nonautonomous ordinary differential equations with a parameter are obtained .

  10. 硕士学位论文《不动点理论及Mazur-Ulam等距定理的一些探讨》综合运用Banach空间几何理论和算子方面的知识。

    Master paper " some fixed point theorems and isometric theorem in linear 2-normed space " , which based on the formers ' studies , applies the geometric theory of Banach space and the operator theory comprehensively .

  11. 所涉及的数学理论包括:上下解方法、比较原理、单调动力系统理论、全局分歧理论、拓扑不动点理论、Lyapunov-Schmidt过程和扰动理论等。

    The tools used here include super-sub solutions method , comparison principle , monotone system theory , global bifurcation theory , fixed-point theory of topology , Lyapunov-Schmidt procedure and perturbation technique .

  12. 本文研究了带p-Laplacian算子整数阶微分方程、以及带p-Laplacian算子含时滞影响的微分方程边值问题的正解,分别利用Avery-Peterson不动点理论、Schauder不动点理论得到了其正解的存在性。

    This paper is concerned with boundary value problems for differential equations and delay differential equations with p-Laplacian operator , respectively . The existence of positive solutions is given by using Avery-Peterson fixed point theorem and Schauder fixed point theorem , respectively .

  13. 本文利用函数逼近和不动点理论给出了正指数超线性Emden-Fowler方程奇异边值问题有C1[0,1]正解的充分必要条件。

    This paper studies the existence of positive solutions of singular boundary value problems of positive exponent superlinear Emden-Fowler equations . A necessary and sufficient condition for the existence of C1 [ 0 , 1 ] positive solutions is given by means of function approximation with the fixed point theorems .

  14. 附息国债到期收益率计算中不动点理论的应用

    Yield Rate of Bonds and the Application of Nonmoving-Point Theory

  15. 基于节点相关性的网络不动点理论研究

    Research on network fixed point theory based on the correlation of nodes

  16. 关于分式线性变换不动点理论中的一个问题

    One Problem on Fixed Point Theory of Fractional Linear Transformation

  17. 不动点理论是非线性泛函分析理论的一个重要组成部分。

    Fixed point theorems act as very important roles in nonlinear functional analysis theory .

  18. WF-模糊度量空间中的不动点理论

    The Fixed Point Theorems on WF-fuzzy Metric Spaces

  19. 本文研究度规空间中的不动点理论及其应用。

    This dissertation deals with fixed point theory in gauge space with its application .

  20. 基于序压缩条件下的减算子不动点理论

    Fixed point theorems for order-compression decreasing operators

  21. 地震波散射非线性反演的不动点理论研究三维弹性波场的线性化逆散射问题

    The fixed point principles of nonlinear seismic scattering inversion On Scattering Inversion of a Three-Dimensional Elastic Wave Equation

  22. 几何常数一直以来都是大家关注的焦点问题,其在不动点理论中发挥着重要的作用。

    Geometric constants have always been the focus of our concern , they play an important role in fixed point theory .

  23. 不动点理论对于解决一些实际问题诸如代数方程、微分方程、积分方程中都有应用。

    Fixed point theory plays a important role in many problems such as algebra equation , differential equation and integral equation .

  24. 使用的主要方法有锥上的不动点理论、拓扑度理论和上下解方法等。

    Some efficient tools such as topological degree theory , fixed point theory and lower and upper method have been applied .

  25. 本文利用不动点理论,给出了一类非线性延迟积分方程正的概周期型解的存在性条件。

    In this paper , we give the conditions of existence of positive almost periodic type solutions for some nonlinear delay integral equations .

  26. 对这一问题的研究涉及到泛函分析、凸分析、集值分析、不动点理论等具有重要的学术价值。

    The research on them involves functional analysis , convex analysis , set-valued analysis and fixed-point theory , which is of much academic value .

  27. 因此,对模糊多属性决策问题和非线性算子不动点理论的研究具有重要的理论意义和较高的应用价值。

    Therefore , to study the fixed point theory of nonlinear operator and fuzzy multi-attribute decision problems are of essential theoretical meaning and high applicable value .

  28. 利用锥上的不动点理论研究了一类二阶算子系统正解的存在性及多解性,得到了一些新结果。

    In this paper , the existence and multiplicity of positive solution for a class second-order operator system are showed via the fixed point theorem on cone .

  29. 它与不动点理论,变分不等式问题,线性和非线性分析,以及其他领域的应用数学如经济,平衡问题等都有密切的联系。

    It has an important relation with stationary point theories , variational inequality , linear and nonlinear analysis , and some applied mathematical problems such as economic and equilibrium problems .

  30. 在信号传递函数满足有界性、或李普希兹条件等情形下,利用不动点理论、M矩阵性质证明了平衡点的存在性。

    Assuming the boundedness , or Lipschitz of the signal transmission functions , the existence of the equilibrium for MAM is proved by using fix point theory and M matrix properties .