交错级数

  • 网络Alternating Series;alternate series
交错级数交错级数
  1. 一种交错级数最小误差范围的余项估计

    A Remainder Estimation of an Alternating Series with Minimum Error Range

  2. 并对一类特殊的双交错级数求和问题,给出了相应的求和公式和示例。

    A summation formula is given for a special alternating series and an example presented .

  3. 本文利用一个简单的递推式求得交错级数的和S2k+1。

    In this paper . the sum S2k + 1 of the alternate series is obtained by using a simple recursion formula .

  4. 交错级数收敛准则的探讨

    Discussion for the Convergence Criterion of a Alternate Series

  5. 基于二项式系数与排列数的交错级数型欧拉方程

    Euler Equation Based on Alternating Series Number Pattern of Binomial Coefficient and Arrangement Number

  6. 交错级数收敛性的一个判别法及其应用

    One way of the discrimination and the use for convergence of the staggered progression

  7. 关于交错级数的一个新的审敛准则

    On the New Convergence Criterion of Alternate Series

  8. 交错级数莱布尼兹判别准则的推广椭圆封头应力分布和常规设计

    The generalized leibniz rule for alternating series ELLIPSE HEAD STRESS DISTRIBUTION AND DESIGN BY RULE

  9. 本文给出了判别一类交错级数敛散性的一种新方法。

    In this paper , a new criterion on convergence and diverge of a kind of alternative series is given .

  10. 负二次幂交错级数型线性齐次微分方程

    The solution of the interlace series type linear even differential equation of contain negative twice power function and arrangement number

  11. 给出了交错级数的一个判别法,应用此判别法可直接判别交错级数是否收敛,以及收敛时是绝对收敛还是条件收敛。

    Making use of the result , we can directly distinguish whether alternate series are convergence or not , absolutely convergence or conditioned convergence .

  12. 讨论了双交错级数的收敛性问题,利用极限理论证明了双交错级数的收敛性,从而推广了判别交错级数收敛性的莱布尼兹法。

    Using the limit theorem , the paper proves the convergence of the bi-alternating series , thus extending Leibniz ′ s criterion on it .

  13. 计算得到的光谱项表示为一个快速收敛的交错级数,与文献数据比较,结果令人满意。

    The spectroscopic terms are fitted as a staggered progression with fast convergence , the spectrum constants were compared with the experimental data and the results are acceptable .

  14. 讨论和分析了一类交错级数的收敛问题,给出了异于莱布尼兹判别法的关于交错级数的一个收敛定理。

    We obtain a convergence theorem of alternative series differing from Leibniz test by discussing and analyzing the convergence of a kind of alternative series , and generalize the using limits of J.

  15. 对已有交错级数的敛散性的判别法加以了综合、比较,结合交错级数自身的特性,给出了交错级数敛散性的一个判别模式。

    On the current existing discriminance , aimed to provide students with good ideas , a judgment mode of convergence or divergence of interlock series has been set out after comparison and analysis .

  16. 该算法用一交错级数的和近似拉氏变换的反演积分,并采用欧拉变换方法加快级数和的收敛。

    In this algorithm , which includes a method of Euler Transform for speeding up convergence of the sum of the series , the integral of inversion of Laplace Transform is approximated to a sum of an alternating series .