代数整数环

  • 网络ring of algebraic integers
代数整数环代数整数环
  1. 代数整数环的每个子环都不是归纳环。

    Every subring of the ring of algebraic integers is non-inductive .

  2. 对一些d,其Q′(d)是Euclid域,二次代数整数环中算术基本定理成立。

    For somed , Q ′( d ) is an Euclid area , And arithmetical fundamental theorem is carried out over the rings of quadratic integers .

  3. Huber利用二次分圆域的代数整数环构作了面向二维信号且具有代数译码算法的纠错码。

    H μ ber use the algebraic integer ring of quadratic cyclotomic field to construct block codes for coding two dimensional signals which are able to correct some error patterns .

  4. 代数整数环上的一类陷门单向函数

    A kind of trap-door one-way function over algebraic integers

  5. 有理数域Q的有限次扩域K叫作代数数域,数域K的所有代数整数构成一个环,称为K的代数整数环,记作ZK。

    The finite extension K of Q is called algebraic number field .