命题逻辑

  • 网络Proposition Logic;Propositional logic;propositional calculus;prepositional logic;statement logic
命题逻辑命题逻辑
  1. 有限扰动模糊命题逻辑系统的∑-广义矛盾式

    Σ - generalized contradiction in the limited value disturbing fuzzy propositional logic

  2. 模糊推理与模糊逻辑Fuzzy命题逻辑中的Fuzzy推理

    Fuzzy Reasoning in Fuzzy Propositional Logic

  3. n值命题逻辑中的P-随机真度及近似推理

    P-randomized truth degrees and approximate reasoning in n-valued logic system

  4. n值命题逻辑系统中公式真度的进一步研究

    The Further Study of Formula 's Truth Degree under n-value Proposition Logic System

  5. 含有否定命题逻辑推理的一致性模糊Petri网模型

    Consistent Fuzzy Petri Nets Model for Logic Programs with Negation

  6. 怎样用VB和多媒体技术实现命题逻辑的CAI

    How to Realize CAI of Proposition Logic by Using VB and Multimedia Technology

  7. 然后,将改进的社会认知优化算法应用于求解SAT问题。命题逻辑中合取范式(CNF)的可满足性问题(SAT问题)是当代理论计算机科学的核心问题,是一典型的NP完全问题。

    And then , the improved SCO is applied to solve the SAT problem .

  8. 格值时态命题逻辑LTP(X)的语义问题

    Semantics of Lattice-Valued Tense Propositional Logic System

  9. 第二章在Lukasiewiczn值命题逻辑中引入了公式的真度理论,得到了一个极限定理。

    Chapter Two : The concept of truth degrees of formulas in Lukasiewicz n-valued propositional logic is proposed .

  10. 以PROLOG语言为背景,实现了由此方法而建立的命题逻辑中命题演绎的自动推理。

    Using PROLOG language , we establish automatic inference based this method about proposition logic .

  11. MV代数的度量化研究及其在Lukasiewicz命题逻辑中的应用

    Metrization on MV-Algebras and Its Application in Lukasiewicz Propositional Logic

  12. 给出了相干命题逻辑自然推理系统NR的自动证明算法。

    This paper presented an automated reasoning algorithm for natural deduction system ( NR ) of relevance propositional logic .

  13. 许多形式化验证问题最终都归结于布尔可满足问题(SAT),它用来判断命题逻辑公式是否为可满足的。

    Many of these formal methods can be translated to Boolean / Propositional Satisfiability Problems ( SAT ), which is used to decide whether a formula according to propositional logic is satisfied .

  14. 三值命题逻辑系统L3~中逻辑理论性态的拓扑刻画拓扑描绘字,拓扑描述符

    Topological Characterizations of Properties of Logic Theories in Three-Valued Propositional Logic System L_3

  15. Lukasiewicz区间值命题逻辑的广义重言式

    Generalized Tautology of Lukasiewicz Interval-valued Propositional Logic System

  16. 因此我们引入Bundy的发生率计算理论,它是从命题逻辑发展而来的概率逻辑。

    So Bundy introduced incidence calculus , which is a probabilistic logic developed from prepositional logic .

  17. 以经典命题逻辑为基础,创建构件关系语言(Lc),建立构件关系推演体系,并介绍推演体系的用途;

    Take the classical proposition logic as the foundation , found the component relations language ( Lc ), establish the deducing system of component relations , and introduce the use of the deducing system .

  18. Hutchison度量完备的充要条件G-R型模糊命题逻辑系统完备的一个充分必要条件

    NECESSARY AND SUFFICIENT CONDITION FOR COMPLETENESS OF HUTCHISON METRIC An iff Condition for the Completeness of the Fuzzy Logic System

  19. 基于格值命题逻辑LP(X)的α-归结原理及α-归结自动推理方法,能够较好地刻画具有可比较性和不可比较性的不确定性信息。

    The α - resolution principle and the α - automated reasoning method based on lattice-valued ( propositional ) logic LP ( X ) can be used to model uncertain information that may be comparable or ( incomparable . )

  20. ヒukasiewicz三值命题逻辑中公式的可靠真度理论

    Theory of Reliable Truth Degree in ヒ ukasiewicz 3-valued Logic System

  21. 第三章是命题逻辑,提出强合取是左连续T-三角模以及合取是普通意义下的弱BL及弱BL代数的概念。

    The third chapter is propositional logic ; the concept of weaker basic logic and weaker basic logic algebras , where strong conjunction is left-continuous T-norm and conjunction is min , are introduced .

  22. QBF是一种具有量词前缀的命题逻辑公式,该公式中的变量都是由存在量词或者全称量词限制。

    QBF Formulae is propositional logic formulae with existential or universal quantifiers to every variable in prefix .

  23. 讨论了基于格值命题逻辑系统LP(X)的不确定性推理,证明了FMP和FMT等不确定推理规则,为进一步讨论语言值逻辑推理提供逻辑基础。

    In this paper , uncertainty reasoning based on lattice-valued propositional logic LP ( X ) is discussed . The uncertainty reasoning rules of FMP and FMT are proved . Those will become the theoretical foundation for reasoning of linguistic logic .

  24. 众所周知,经典命题逻辑中的判定问题是NP完全问题,而一阶逻辑是半可判定问题,关于非经典逻辑特别是非单调逻辑的计算复杂性分析和算法实现是一个重要的研究领域。

    It is well known that the determinant problem in classic proposition logic is a NP complete problem , and the first order logic is a half determinant one . So both the analysis of computing complexity and the realization of it are the most important fields .

  25. 由此可见,命题逻辑只反映了一部分逻辑规律。

    Thus prepositional logic can only expressparts of the logic rules .

  26. 一个命题逻辑机器证明专家系统的研究与开发

    The Development of an Expert System Mechanically Proving Statement Logic Theorem

  27. 关于正规模态命题逻辑系统的完全性证明

    Discussing about the Completeness Proof of Normal Modal Propositional Logic System

  28. 二值命题逻辑理论的结论类型和分类

    Type of conclusions and classification of theories in two-valued propositional logic

  29. 二值命题逻辑中的蕴涵度量与近似推理

    The Implication Measurement and Approximate Reasoning in Two-valued Propositional Logic

  30. 试析斯多葛学派命题逻辑研究中的命题函子理论

    Research on the Propositional Functor in Propositional Logic of Stoicism