弯曲时空

wān qū shí kōnɡ
  • curved space-time
弯曲时空弯曲时空
  1. 弯曲时空中的COW相移及Anandan-Stodolsky效应

    Cow Phase Shift and A-S Effect in Curved Space-Time

  2. 弯曲时空Dirac方程不存在束缚态

    There are no Bound States of Dirac Equation in Curved Space-Time

  3. 1+1维弯曲时空中手征QCD2的解

    Solution of chiral qcd_2 in 1 + 1 dimensional curved spacetime

  4. 适当地采用乌龟坐标变换,便可对弯曲时空中的Hamilton-Jacobi方程进行变量分离。

    The variations in Hamilton-Jacobi equation in curved spacetime are separated by means of tortoise coordinate transform .

  5. DeSitter弯曲时空中遗迹引力波及其能量动量赝张量的表述和正定性问题

    Relic Gravitational Wave and Positive Definite and Expression of Their Energy-Momentum Pseudo-Tensor in De sitter Background Spacetime of the Curve

  6. 同时,本文导出了玻色弦在一般弯曲时空中的运动方程,为广义Lorentz方程、

    The motion equation of bosonic string in the curved space-times is obtained , it is a general Lorentz equation .

  7. 弯曲时空中Proca光子的静质量效应

    Effects of Proca Photon in Curved Spacetime

  8. 对爱因斯坦的弯曲时空理论与生物体DNA双螺旋结构的相关性进行了哲理性思考:控制生命时间程序的生物钟基因编码在DNA双螺旋结构上可能具有时空弯曲的运动原理。

    To philosophical think for between relationship of The theory of warpage of space time of Einstein and biological DNA double helix structure . It is possible a principle of movement of warpage of space time for the order of control the life time of coding biology clock gene .

  9. 过去几十年,国际上在主要研究平直时空中的Proca方程组的同时,也开展了对弯曲时空中Proca方程组的研究,研究非零质量光子对各种度规的影响。

    Proca equations have been mainly studied in flat space and it has been studied also in curved space during the past decades .

  10. 弯曲时空Dirac方程用简洁的形式普适地表示了任一Fermions物质场在任一时空背景所应满足的场方程,是研究宇宙的有力工具。

    In curved spacetime , the Dirac equation , which expresses the field equation that an arbitrary Fermions material field obeys in an arbitrary background spacetime universally in a neat form , is a powerful method in studying the universe .

  11. 利用广义Tortoise坐标变换研究了含整体单极动态黑洞时空的温度,进而从解粒子在弯曲时空的哈密顿-雅可比方程出发研究了此黑洞的量子非热辐射。

    The temperature of black hole with an internal global monopole is studied by making use of generalized Tortoise coordinate conversion . Moreover , the quantum non-thermal radiation of the black hole is also studied from solving the Hamilton-Jacobi equation of particle in curved spacetime .

  12. 弯曲时空中Dirac方程的解一方面可以解释并预言Dirac粒子在弯曲时空中的行为,另一方面也反映了高度弯曲时空附近天体(如黑洞)的自身演化图象。

    The solutions of Dirac equation in curved spacetime can on one hand explain and further predict the behavior of Dirac particles in curved spacetime , on the other hand make out the evolvement picture of celestial body ( for example the black hole ) beside highly curved spacetime .

  13. 弯曲时空释放引力能的新机制

    A new mechanism of the releasing gravitational energy in curved space-time

  14. 研究弯曲时空中平面运动刚体的动力学协变方程。

    The covariant equation of plane motion body in curved space-time is studied .

  15. 静态弯曲时空中粒子运动的相平面分析

    Phase-plane Analysis of Particles Motion in Static Curved Spacetimes

  16. 弯曲时空的半整数自旋场方程

    The field equation of half-integer spin in curved space-time

  17. 弯曲时空中Hamilton-Jacobi方程的变量分离法

    The Method of Separation of Variation for Hamilton - Jacobi Equation in Curved Spacetime

  18. 自旋粒子在弯曲时空中的运动

    The Motion of Spinning Particles in Curved Spacetimes

  19. 弯曲时空几何光学中的聚焦定理

    Focusing theorem of geometric optics in curved space-time

  20. 黑洞熵,黑洞信息佯谬及弯曲时空中的量子通讯

    Black Hole Entropy , Black Hole Information Paradox & Quantum Teleportation in Curved Space-time

  21. 弯曲时空中相对弦方程之初边值问题

    The Initial-boundary Value Problem for the Equation of a Relativistic String in a Curred Space-time

  22. 严格、详细地证明了弯曲时空几何光学中的聚焦定理。

    The focusing theorem of geometric optics in curved space-time be proved strictly and in detail .

  23. 一般四维稳态弯曲时空的能量

    Energy of General 4-dimensional Curved Spacetime

  24. 弯曲时空中的场方程

    Field Equation in Curved Spacetime

  25. 弯曲时空的钟同步

    Clock synchronization in curved spacetimes

  26. 详细讨论了弯曲时空中类时曲线上矢量场的转动,以弥补有关专著的不足。

    The rotation of a vector field in timelike curve in curved spacetime is discussed in detail .

  27. 弯曲时空中的平衡热辐射,表现出用坐标量表示的普朗克黑体谱。

    The equilibrium thermal radiation in a curved space-time shows Planco black body spectrum given by coordinate quanties .

  28. 又或者它们遵循的螺旋路径其实是弯曲时空中的直线?

    Or are they following helical paths which are actually straight lines in curved spacetime ? [ qh ]

  29. 另一个推论是:在有质物体近旁的弯曲时空中,时钟会走得比较慢。

    Another consequence was that in the warped space-time near a massive object , clocks would run more slowly .

  30. 本文利用等效势能曲线和相平面方法,研究了实验粒子在几种弯曲时空中的运动。

    In this paper , we investigate the motion of a test particle in curved spacetimes using the effective potentials and the phase-plane method .