次元

cì yuán
  • dimension
次元次元
  1. 来听听这首歌,专辑《异次元摇滚》中的《噢耶》。

    Listen to this song , Oh Yeah , on Music From Another Dimension .

  2. 撒马利亚人的喽啰就过来把我们炸到异次元去好了。

    Samaritan 's goons can just come and blast us into the next dimension .

  3. 基于自稳定次元分析学习规则,提出一种添加了惩罚项的次元分析(MCA)学习规则。

    A minor component analysis ( MCA ) learning rule is presented which includes a penalty term on the self-stabilizing MCA learning rule .

  4. 结果:部分特质内部一致性系数较低,各因素的独立性较好,次元人格因素CFA参数达到或接近可接受的标准。

    RESULTS : Some factors had low internal consistency . The CFA 's parameters of the second-order personality factors reached or approached the acceptable standards .

  5. 本文应用变分形式、虚功原理、Hermite三次元,提出弹性地基梁振动问题的有限元方法。

    With the help of variation method , virtual work principle and cubic hermite element , the author puts forward a finite element method to solve the problem of beam vibration on elastic foundation .

  6. 分析了神经次元分析(MCA)学习规则与该波束形成优化问题在数学描述上的相似性,利用神经MCA学习规则实现鲁棒自适应波束形成。

    Analyzes the mathematical similarity between the neural minor component analysis ( MCA ) learning rule and beamforming optimization problem . Then , the neural MCA learning rule is used to implement robust adaptive beamforming .

  7. 在这个不断增长的能量中,你可以与活的水晶力量连接,并有助于你梅尔卡那Mer-Ka-Na的扩展而进入多重次元的神圣之境。

    Within this rising energy will you be able to connect with a living crystalline force that will assist your Mer-Ka-Na expansion into your multidimensional divinity .

  8. 我将会是以光为中心的,较少低次元的。

    I will be more light centered and less lower dimensional .

  9. 一种基于次元分析技术的鲁棒波束形成算法

    A Robust Beamforming Algorithm Based on Minor Component Analysis Technique

  10. 你们全是造物主之神在多重次元的火花!

    You are all the multidimensional sparks of the Master Creator God !

  11. 提出一种新的边界单元:单节点二次元。

    A single-node quadratic element ( SNQE ) is proposed in this work .

  12. 然后会发现同时存在的许多次元。

    And then you 'll find out how many dimensions there really exists .

  13. 矩形双二次元插值校正的一点注记

    A note on interpolating correction of the biquadratic finite element in rectangle domain

  14. 大师们,你必须了解,你是同时存在于多重次元之间的。

    You must understand Masters , that you exist within both multidimensional parallels .

  15. 基于几类基本三角形网格下的线性元与二次元的渐进展式和外推研究

    Asymptotic Expansions and Extrapolations for Linear and Quadratic Finite Element Based Common Triangular Meshes

  16. 一类非线性椭圆问题三角形二次元的超收敛性

    The superconvergence of triangle quadratic finite element for a class of nonlinear elliptical problems

  17. 温度场的二次元分析方法

    Square Unit Method Analysis of the Temperature Field

  18. 你的灵魂部分居住于超越物质层面的其他次元。

    The soul portion of you resides in other dimensions beyond the physical level .

  19. 首先,即使宇宙大爆炸理论的起源也必须是内次元的。

    First , even the Big Bang theory had to be interdimensional at its beginning .

  20. 害怕异次元的辐射?

    Scared of a little trans-dimensional radiation ?

  21. 次元经常被非次元所塑造。

    Dimension is always shaped by non-dimension .

  22. 这个联邦包含你们地球上一些超越第三次元的实体。

    This Confederation contains those from your own planet who have attained dimensions beyond your third .

  23. 在我们所给过的所有次元调音质中,这一首是我们最视为珍宝的。

    Of all the Dimensional Attunements we have given , this one is our most treasured .

  24. 转移到零点会从5次元到12次元发生,第12次元是水晶的顶点。

    The shift to zero point occurs from the5th to12th dimension.The12th dimension is the Crystalline apex .

  25. 认知策略最常使用,其次元认知和社会/情感策略。

    Cognitive strategy is mostly frequently used , and then comes metacognitive and social / affective strategy .

  26. 我们第一个任务是把那个次元,那另一个次元,带到这个世界上。

    Our first task is to bring that dimension , the other dimension , into this world .

  27. 主人公们在三次元的现实世界到二次元的“网络漫画世界”之间来回穿梭。

    The protagonists travel through different dimensions-the 3-D real world and the 2-D " webcomic world . "

  28. 由于这种矿物质的混合物,次元门户会更容易造访这个地区。

    Because of this mixture of minerals , the dimensional portals are more easily accessed in this area .

  29. 某些金字塔是多重次元的,形成八面体,在物理和非物质之间用来联系神圣几何场域。

    Certain Pyramids are multi-dimensional , forming octahedrons that work in tandem sacred geometric fields between physical and nonphysical .

  30. 本文用二次元求解了非均匀介质填充波导的边值问题。

    We apply here the second-order finite element method to the boundary-value problem of waveguides filled with inhomogeneous dielectrics .