欧拉数

  • 网络Euler number;Euler's Number
欧拉数欧拉数
  1. 建立了空气流动阻力的准则方程,即欧拉数Eu与雷诺数Re、普朗特数Pr之间的函数关系。

    Dimensionless equation of air flow resistance is functional relation of Euler number , Reynolds number and Prandtl number , is set up after experimental data is analyzed .

  2. 确定将缺陷面积、缺陷长短径比、缺陷周长以及欧拉数等作为钢球表面缺陷识别的特征参数,并提出了一种基于BP神经网络的钢球表面缺陷类型识别方法。

    Defect area 、 defect length-diameter ratio 、 defect circumference and Euler number are determined as characteristic parameter , and it has proposed a method of the steel ball surface defect based on BP neural network .

  3. 本课题探讨了佛汝德数Fr、雷诺数Re、韦伯数We、欧拉数Eu与贴壁流之间的内在关系。

    This subject has probed into the inherent relation between the Froude Numbers ( Fr )、 Reynolds Numbers ( Re )、 Weber Numbers ( We )、 Euler Numbers ( Eu ) and the wall pressing weir flow .

  4. 欧拉数与伯努利数的关系及应用

    The Relation Between Euler Number and Bernoulli Number and Their Application

  5. 欧拉数与伯努利数的历史发展

    The Developing History of Bernoulli Numbers and Euler Numbers

  6. 欧拉数、戴煦数与齿排列的关系研究

    Research on the Relations Between Euler Numbers , Dai Xu Numbers and Gear Mutation

  7. 计算二维图像欧拉数的新公式

    A New Formula for 2D Image Euler Number

  8. 戴煦数与欧拉数

    Dai Xu Numbers and Euler Numbers

  9. 在本章还包括了作者独立证明的关于伯努数和欧拉数研究的一些新成果。

    The new results are presented there , some of which are accomplished by the author .

  10. 第五章简要地回顾了随着数学的发展伯努数和欧拉数在关键时期所取得的重要成果。

    The last chapter briefly reviews the important results in critical periods along with the development of mathematics .

  11. 最后对计算得到的车牌候选区的欧拉数进行判别,最终提取真正的车牌区域。

    At last , the real license plate area is obtained according to the Euler number of candidate regions .

  12. 文章在定义图段和相邻数概念的基础上,提出了由局部性质计算二值图像欧拉数的一种新公式,并进行了证明。

    In this paper , a new formula of the Euler Number computing is proposed and is proved , based on the definition of the Figure Segment and Neighbor Number .

  13. 提出了基于准欧拉数特征判别算法和基于端点特征的双向松弛匹配判别算法,并实现了这两个算法。

    Present a distinguish algorithm base on Quasi-Euler number feature and a bidirectional relaxation matching distinguish algorithm base on Endpoint feature , and then implement these two algorithms . 5 .

  14. 对欧拉数、戴煦数与齿排列的关系进行研究,揭示了欧拉数与戴煦数都是一对相辅相成、难解难分的函数,比伯努利数与欧拉数的关系更进一步;

    This paper reveals that Euler numbers and Dai Xu numbers are more relevant and inseparable function to each other when they are compared with Bernoulli numbers and Euler numbers .

  15. 优化特征选择,选定面积、周长、长轴、短轴、欧拉数、几何矩等共12个特征参数作为神经网络输入向量进行分类试验。

    Optimization of feature selection , we select area , perimeter , long axis , short axis , Euler number , geometric moments , and a total of 12 feature parameters as input vector .

  16. 再通过特征提取,得到端点、欧拉数等有效的特征信息,并辅以基本字符知识库进行判定,识别出这些基本组成字符。

    Secondly , through the feature extraction , this system will get the endpoint , the Euler number and other useful characteristics information and then will determine and recognize these basic characters by their basic character repository .

  17. 通过对发动机气道内气体流动过程的相似分析,在雷诺Re准则数足够大的前提下,非定性准则欧拉Eu数和相似不变量无因次涡流NR保持不变。

    By the similarity analysis of flow process in engine 's port , it 's found that at the base that Renold number is big enough , in-qualitative rule Euler number Eu and similar invariable dimensionless swirl NR keep unaltered .

  18. 旋流比小于30时欧拉准数与填料层轴向厚度的0.9次方成正比,旋流比大于30时欧拉准数与填料层轴向厚度的0.5次方成正比。

    Euler number was proportion to the 0.9 power of packing axial thickness under rotation-flow ratio less than 30 ;

  19. 借助于几何商,我们定义了moduli空间上的欧拉示性数。

    We also define Euler characteristic for moduli space by the concept of geometric quotient .

  20. 众所周知,一般黑洞的欧拉示性数都为2(或者为0),而NUT-Kerr-Newman黑洞是个例外,其欧拉示性数大于2。因此计算NUT-Kerr-Newman黑洞的玻色子熵有特殊的意义。

    It is well known that the Euler characteristics of most black holes is 2 ( or 0 ), only NUT-Kerr-Newman black hole whose Euler characteristics is over 2 . Therefore , it is significant to calculate the entropy in the NUT-Kerr-Newman black holes .

  21. 欧拉示性数在确定不动点方面的一些应用

    Some Application of Euler 's Characteristic on Determining Fixed Point

  22. 欧拉示性数在生物方面的应用

    Application of Euler characteristic on Biology

  23. 它们的空间方位分别用方向余弦和欧拉四元数表示;对每种单元选择适当的形函数描述单元的基本弹性模态。

    The azimuths of the elements are described by direction cosine and Euler quaternion , respectively . The shape function of the element is selected to describe the basic elastic mode .