泛函积分
- functional integrals
-
泛函积分方法于Dicke模型中的临界温度和集体激发谱
The Functional Integrals Method , Critical Temperature and Collective Exciation Spectrum in the Dicke Model
-
通常可采用两种方法研究一维非线性量子场论模型的统计物理性质,即:Betheansatz方法或泛函积分方法。
Abstract : Generally , two methods can be used to study the statistical physics properties of one-dimensional nonlinear quantum field model , that is Bethe ansatz or functional integrals ( FI ) methods .
-
Banach空间中一类具有无穷时滞泛函积分微分方程解的存在性
Existence of Solutions for a Functional Integro-Differential Equation with Unbounded Delay in Banach Space
-
具有负U中心机制的稀掺杂共晶合金的泛函积分方法求超导体的临界温度
Critical temperature of superconducting eutectic alloys containing dilute impurities under the negative U centers mechanism with a functional integral method
-
讨论了Banach空间中一类具有无穷时滞泛函积分微分方程解的局部存在性和整体存在性。
This paper mainly discussed the local existence and global existence of solutions for a functional integro differential equation with unbounded delay in Banach space .
-
应用Slave-Boson技术和泛函积分方法,处理了双导带Anderson晶格模型。
A two-conduction band lattice Anderson hamiltonian is studied by the Slave-Boson technique and the functional integral method .
-
本文建立Anderson体系的泛函积分理论中无穷阶独立谐波展式及其相应的磁化率X(T)和局域态平均电子数n1(T)的展式;
An expansion with infinite independent harmonics in a functional integral approach and the corresponding expansions of susceptibility X ( T ) and occupation number of electrons in localized states n1 ( T ) for Anderson system are derived in this paper .
-
一维量子sine-Gordon-Thirring模型中的泛函积分方法
Functional Integral Method in One-Dimensional Quantum Sine-Gordon-Thirring Model
-
用Feynman泛函积分(路径积分)方法分析了电子双缝干涉,结论与光的双缝干涉完全一致。
The double-slit interference of electrons is analyzed by using the Feynman functional integration ( path integrals ), and the conclusion is in keeping with light 's.
-
采用泛函积分方法研究了Dicke模型中的临界温度和能隙方程,计算了模型中的零温度能隙;
The critical temperature and energy gap equations in the Dicke model are studied by means of functional integrals method . The zero temperature gap is also calculated ;
-
本文主要处理两类问题:1.用微扰泛函积分方法推导sine-Gordon-Thirring模型中的等效势和自由能,另外,在弱耦合情况下计算两个杂质和凝聚项的四阶统计平均值。
The effective potential and free energy of sine-Gordon-Thirring model are derived by using perturbation functional integration method . Moreover , four-order statistical averages of two-impurity with condensed term are calculated in weak-coupling case . 2 .
-
根据新的非微扰泛函积分方法,推导了sine-Gordon-Thirring模型的等效势和自由能,通过引入两个变分参量,在强耦合区间计算了两个杂质和凝聚项的二阶统计平均值。
The effective potential and free energy of sine-Gordon-Thirring model are derived by means of new non-perturbation functional integration method , two variational parameters are introduced to calculate two-order statistical averages of two-impurity with condensed term in strong-coupling range .
-
泛函积分量子化中的正则对称性质和守恒量
Canonical Symmetries and Conserved Quantities in the Quantization of Functional Integral
-
采用平均场近似后,进一步完成泛函积分可以推导出配分函数的具体表达。
After mean field approximation , the partition function can be derived .
-
自对偶场光锥量子化的泛函积分形式
Functional Integration Formulation of Light-Cone Quantization of Self-Dual Fields
-
泛函积分形式中的整体正则对称性质
Global Canonical Symmetry in the Functional Integral Formalism
-
通过修正的泛函积分方法研究两束激光对石墨层中原子位移涨落的影响。
Atomic displacement fluctuation in a graphene under dual laser fields was studied by a modified functional integral approach .
-
并将泛函积分理论结果与重整化群理论结果作出比较。
With the aid of number theory and canceling singularities , the results of functional integral approach are compared with those of renormalization group theory .
-
本文利用泛函积分方法研究了超导金属微粒准粒子态密度的量子尺寸效应及随温度的变化。
The effect of size and temperature on the quasiparticle density of state in small superconductorsty have been calculated by using the functional integral method .
-
运用锥拉伸与压缩不动点定理,研究一类泛函积分方程的正解。
We study the existence of positive solutions for a functional integral equation using a fixed point theorem of expansion and compression type in a cone .
-
几何和量子场论课程是用泛函积分的语言对微扰量子场论的严谨的介绍,主要针对数学家设计。
Geometry and Quantum Field Theory , designed for mathematicians , is a rigorous introduction to perturbative quantum field theory , using the language of functional integrals .
-
根据热核泛函积分方法计算了黑洞背景下玻色场与费米场的能量密度涨落,并与变分泛函积分方法得到的结果进行了对比。
Energy density fluctuation of Bose and Fermi fields are calculated by means of heat-Kert functional integrals , they are compared with the results of variational functional integrals method .
-
采用泛函积分与相干势近似相结合的方法,对周期性安德森模型在顺磁相的电子结构和自旋涨落性质进行研究。
Using a method to combine functional integral with the coherent potential approximation , we studied the electronic structure and the spin fluctuation of the periodic Anderson model in the paramagnetic state .
-
另外通过分离出泛函积分中的运动学部分并采用格点理论完成非高斯型泛函积分,而得到格点形式的强耦合展开式。
Pulling out the " kinematical term " of the functional integral as a functional differential operator and evaluating the remaining no Gaussian functional integral using the lattice theory , we obtain the strong-coupling lattice expansion .
-
正泛函的积分表示定理和零容集的刻画
The representation of positive functional and the character of zero capacity set
-
我们通过泛函路径积分方法得到了系统的能隙和束缚态能量的解析解,这是之前的研究结果所没有的。
We analytically investigate the gap and binding energy by the functional path integral method which is a new result .
-
导出了与阿贝尔手征群陪集空间纯规范场的生成泛函路径积分测度和有效作用量联合起来在手征群变换下具有不变性相应的恒等式。
We derived the identity which combines the measure of the path-integral of the generating functional and the effective action of the pure gauge field in the coset space of the Abelian chiral group , and is invariant under chiral transformation .
-
GAUSSIAN程序中密度泛函理论方法积分精度对计算结果的影响
The effect of the integral precision on the computational result in density functional theory methods in GAUSSIAN program
-
本文首先证明两个含有累次积分型泛函的非线性积分不等式,然后利用它们讨论非线性Volterra型积分微分方程组以及褶积型积分方程组的解的可延区间和界值估计。
In this paper we discuss the prolongation and estimation of solutions of non-linear systems of Volterra integro-differential and integral equations .
-
运用泛函分析和积分方程的理论,证明了系统解的性质。
Applying the theory of functional analysis and integral equation , we prove that the properties of solution .