牛顿研究
- 网络Newtonian Studies
-
XMM-牛顿研究小组的论文发表在8月1日的《天体物理学杂志通讯》上;
The XMM-Newton paper was published in the Aug.1 issue of Astrophysical Journal Letters .
-
牛顿研究出重力的意义。
Newton explored the meaning of gravity .
-
格子Boltzmann方法在非牛顿流体研究中的应用
Lattice Boltzmann Method for the Non - Newton Fluid flows
-
牛顿在研究光方面,已经作了大量的实验工作。
Newton had been doing a considerable amount of experimental work in the study of light .
-
韦斯特福尔是当代著名的科学史家,尤其以对牛顿的研究著称。
R. S. Westfall was a famous historian of science , especially for his Newtonian study .
-
牛顿的研究成果在1687年首次出版的《自然哲学的数学原理》一书中发表。在这本书里牛顿对以前科学家所关心的大部分力学难题做出了解答。
The outcome was the famous " Principia Mathematica , " first published in 1687 , in which Newton presented solutions to most of the problems of motion that had concerned earlier scientists .
-
牛顿在研究引力定律的过程中发展了微积分,而在20年代,也有一段类似的繁荣时期,量子理论的研究需要新的工具,而这工具意外地在纯数学的发展中被发现了。
Newton had developed the calculus and the theory of gravitation together , and in the 1920s there had been a similar fertile period , when it was discovered that the quantum theory demanded techniques which were miraculously to be found in some of the newer developments of pure mathematics .
-
牛顿对色散研究的贡献
Newton 's contribution to the study of chromatic dispersion
-
优化潮流牛顿算法的研究及应用
Study of Optimal Power Flow by Newton Approch and its Application to Var Optimization
-
解决半无限规划问题的牛顿型算法研究
Newton-type Methods for Solving Semi-infinite Programming Problems
-
曲柄滑块机构综合的三周期牛顿混沌法研究
3-cycle Newton chaos iteration solution method and its application to function synthesis of planar crank-slide mechanism
-
平面刚体导引连杆机构综合的区间牛顿迭代法研究
Research on interval Newton iteration algorithm for the synthesis of link mechanism guided by planar rigid body
-
牛顿留下的研究论述证明了这位开启科技时代大门的天才拥有惊人的专注力。
The papers Newton left behind testify to the incredible powers of concentration of the genius who opened the door to the age of technology .
-
聚丙烯酰胺与生物体液均为假塑性流体,并且对聚丙烯酰胺的基本性质已经有明确的认识,本文采用聚丙烯酰胺水溶液作为非牛顿流体,研究营养类分子在非牛顿流体中的扩散。
Both polyacrylamide ( PAM ) and body liquid are pseudoplastic fluid , in this paper , PAM aqueous solution has been used to study the diffusion behavior of the nutritious molecules in non-Newtonian fluid .
-
生物体液、血液均为非牛顿流体,研究营养类分子在非牛顿流体中扩散,对控制扩散过程、指导临床治疗具有实际意义。
As well known , the body fluid and blood are typical non-Newtonian fluid , so it is very important to investigate the diffusion of the nutritious molecules in non-Newtonian fluid for controlling the diffused process and helping the clinical treatment .
-
本文应用牛顿力学原理研究管理决策问题,建立了决策合力模型,并以中国物资储运总公司组织变革实践为例,研究了该模型的应用模式。
This article applies the Newtonian mechanics principle research management decision-making question , it has established the decision-making model of assembled forces , and stores the organization take the Chinese commodity storage and transport main corporation to transform the practice , has studied this model application pattern .
-
关于非线性约束优化和变分不等式问题的QP-FREE和牛顿型算法的研究
QP-FREE and Newton-Type Algorithms for Nonlinear Constrained Optimization and Variational Inequality Problems
-
对目前用于ICEIT的敏感矩阵法和牛顿迭代法进行研究,提出新的成像算法&迭代敏感矩阵法。
Provide a new method : Iteration Sensitive Matrix Method by studying the current reconstruction algorithms of ICEIT : the Sensitive Matrix Method and the Newton Iteration Method .
-
三次曲线牛顿分类法的研究
The Coordinate Systems for Standard Equations of Cubic Curves Newton 's Classification
-
牛顿环干涉实验研究
Studying on the interference experiment of Newton 's ring
-
渐开线齿轮传动的时变非牛顿热弹流润滑研究
Study on Transient Non-Newtonian Thermo-Elastohydrodynamic Lubrication of Involute Gearing
-
牛顿并不把他的研究局限于数学。
Newton did not confine his studies to mathematics .
-
金属烧结毡滤芯过滤非牛顿料浆实验研究染料溶液过滤器,滤[色]浆器
Experimental Research on Filtration of Non-Newtonian Fluid by Filter Element of Sintered Metal Fiber
-
牛顿信道的带宽研究
Research on the Bandwidth of Newton Channel
-
17世纪伟大的科学家牛顿爵士第一个研究了引力。
Sir Isaac Newton , the great scientist of the seventeenth century , first studied gravitation .
-
竹浆纤维纱线芯吸行为的研究(英文)金属烧结毡滤芯过滤非牛顿料浆实验研究
Wicking behavior of bamboo pulp yarns Experimental Research on Filtration of Non-Newtonian Fluid by Filter Element of Sintered Metal Fiber
-
文献[1]对有限维空间中非线性方程组的不精确拟牛顿法的收敛性进行了研究,为无穷维空间上的算子方程的不精确拟牛顿法的研究作好了准备。
So it is necessary to investigate inexact quasi-newton method in Hilbert space . In [ 1 ] the author has investigated the convergence property of inexact quasi-newton method for nonlinear equations in finite dimensional space .