线性收敛
- 网络linear convergence
-
与变尺度法和共轭梯度法相比,本文方法可保证线性收敛,在PC平台上可基本达到实时效果。
Compared with variable metric method and conjugate gradient method , our algorithm could assure linear convergence , and near real-time performance could be obtained on PC.
-
本文证明了GR算法线性收敛,提出了一种改进的GR算法。
We prove the linear convergence of GR algorithm , and present an improved one .
-
前馈网络的一种超线性收敛BP学习算法
Super-Linearly Convergent BP Learning Algorithm for Feedforward Neural Networks
-
证明了这些修正的算法具有全局收敛性且保持局部二步Q超线性收敛。
It is proved that the improved algorithms possess global and two step Q superlinear convergence properties .
-
Minimax问题的一个超线性收敛的SQP算法
A superlinearly convergent SQP algorithm for Minimax Problems
-
证明了这种方法是q-超线性收敛的和大范围收敛的,并给出了与Newton法的数值比较。
The method is shown to be q-superlinear convergent and global convergent , and the numerical comparison with Newton method is given .
-
约束优化无严格互补的超线性收敛SQP强次可行算法
A Superlinearly Convergent Strongly Sub-Feasible SQP Algorithm for Constrained Optimization Without Strict Complementarity
-
等式约束优化问题SQP算法的超线性收敛充要条件
Sufficient and Essential Conditions of Super-linear Convergence for SQP Algorithm in Equality Constrained Optimization Proble
-
在F为一致P-函数情形,证明了算法的全局收敛性、局部超线性收敛性和二次收敛性,对于非退化的线性互补问题仍具有有限步收敛性。
Global convergence , local superlinear convergence , quadratic convergence and finite termination for nondegenerative linear complementarity problems are proved under the assumption that F is a uniform P & function .
-
一类修正BFGS算法的局部超线性收敛性
Local Q-superlinear Convergence of a Modified BFGS Algorithm
-
基于Newton迭代法对于求重根具有线性收敛性,给出了加速其收敛的方法以及迭代公式,收敛速度得到了有效的提高。
Considering that the Newton iterative algorithm has first-order convergence in multiple roots , the author advances the method of accelerating its convergence and iteration formula .
-
在第一章中,对具有一般约束的非线性规划构造出新的具有超线性收敛性的SQP算法。
In the first chapter , introduces a new SQP algorithm for nonlinear optimization with equality and inequality constraint .
-
本文提出一个求解非线性minimax问题的新算法,该算法具有全局和一步超线性收敛性。
In this paper , a new algorithm for nonlinear minimax problems is presented which has global and one - step superlinear convergence .
-
并且,算法使用BFGS拟牛顿方法更新矩阵Bk,不需要函数是一致凸的假设条件,我们证明该方法具有全局收敛性和超线性收敛性。
Furthermore , we use BFGS method to update matrix B_k , without the assumption condition of f is uniformly convex , we show that the method is globally and superlinearly convergent .
-
利用一个修正的BFGS公式,提出了结合线搜索技术的BFGS-信赖域方法,并在一定条件下证明了该方法的全局收敛性和超线性收敛性。
By using a modified BFGS formula , a BFGS-type trust region method with line search technique for unconstrained optimization problems is proposed .
-
随后,基于EM算法,提出了该模型的新算法EMSFM,证明了该算法的线性收敛法,分析了它的收敛速度。
Accordingly , based on EM algorithm , a new algorithm EM SFM for this model is presented , its linear convergence is proved , and its convergence rate is also analyzed .
-
本文将集中讨论局部收敛性,特别是证明了在使用DFP或PSB等矩阵校正公式时,修正后的方法在一定的条件下是超线性收敛的。
Particularly , it is proved that if DFP or PSB matrix updating formulae are used , then our method will be convergent superlinearly under some conditions .
-
本文指出当Jacobian近似满足有界退化性质时,由拟牛顿算法得到的迭代序列最多是线性收敛的。
This paper points out that if a sequence of Jacobian approximation satisfies the bounded deterioration , the sequence generated from the quasi & Newton methods is no better than linear convergence .
-
POWELL关于拟牛顿法的收敛性的结果推广到超记忆DFP方法,得到了超记忆DFP方法的收敛性定理和超线性收敛速度的结果,并讨论了记忆项的作用。
POWELL are generalized to the supermemory DFP method and its convergence theorem and superlinear rate of convergence are obtained here with some concerned discussions on functions of memory terms .
-
在合理的条件下,算法具有整体收敛性且两块校正的双边既约Hessian投影法将保持超线性收敛速率。
The global convergence results of the proposed algorithm are proved while maintaining fast local superlinear convergence rate is established by performing a two-piece update of two-side projected reduced Hessian .
-
D-F-P方法的超线性收敛
Superlinear convergence of the d-f-p method
-
在第四章,我们考虑约束规划的一个基于SQP方法的信赖域算法,证明了它的全局收敛性和超线性收敛。
Both of them deal with the equality constrained optimization . In Chapter ⅳ, a trust-region algorithm based on SQP method is given , its global convergence and superlinear convergence are proved .
-
文中对非线性最小二乘问题给出了一种新型求解方法&分块尺度化ABS求解方法,并证明了这类方法的局部超线性收敛性,最后在尺度矩阵取特殊值时给出了数值结果。
As a new type of method for nonlinear least square problems , the block scald ABS meth-ods are presented , and their locally superlinear convergence is proved . Finally the numerical re-sults are given with the special choice of the sealed matrices .
-
本文研究使用Ishikawa迭代格式求实李普希兹映射的不动点,指出该迭代格式仅具线性收敛率;
In this paper we consider Ishikawa 's iteration scheme to find fixed points of real Lipschitz mappings . We declare that the Ishikawa 's iteration only has linear convergence rate .
-
提出一个求解LC1无约束优化问题的信赖域算法,在较弱条件下证明了全局收敛性和超线性收敛性。
A trust region method for LC ~ 1 unconstrained problems was presented and under mild conditions we proved its global and superlinear convergene .
-
该算法全局和超线性收敛并且去掉了传统SQCQP算法全局收敛性分析中的一致正定性假设。
The algorithm is globally and superlinearly convergent , and the uniformly positive definiteness assumption in the global convergence analysis of traditional SQCQP algorithms is removed .
-
Powell在文献[1]中证明了D-F-P方法是超线性收敛的,Dennis等人在文献[2]也给出了同样的结果,但是证明方法不同。
The D-F-P method was proved to be superlinear convergence in reference [ 1 ] by Powell . Same result was given in reference [ 2 ] by Dennis and More ' but the methods used were different between reference [ 1 ] and [ 2 ] .
-
并且该方法的收敛速率至少是R-线性收敛的。
The convergence rate of this method is at least R-linearly .
-
非线性约束最优化一族超线性收敛的可行方法
A Class of Superlinearly Convergent Feasible Methods for Nonlinearly Constrained Optimizations
-
均衡约束优化具有超线性收敛性算法的研究
Research on the Superlinearly Convergent Algorithms for Optimization with Equilibrium Constraints