调和级数
- 名harmonic progression
-
关于调和级数的一个性质
A property of harmonic progression
-
调和级数与P级数敛散性的简单证法
A Brief Proof for Convergence and Divergence of Harmonic progression and P progression
-
关于调和级数与Euler常数的数学实验
Experimentation on Harmonic Series and Euler ' Constant
-
调和级数法与重力资料反演地壳构造
The harmonious series and gravitational data used to inverse crustal structure
-
调和级数部分和序列的单调性质
The Monotonicity of Partial Sum Sequence on Harmonic Series
-
用面积证明原函数存在定理和调和级数的发散性
Proving to the Existence Theorem of Primitive Functions and Divergence of Harmonic Series with Area Principle
-
调和级数的一个性质
A Property of Harmonious Series
-
调和级数是一个具体的、重要的数项级数,在级数理论中具有重要的地位。
Harmonic series is a concrete , important series , it plays an important role in the theory of series .
-
当函数的最佳逼近满足一定条件时,给出了球调和级数的部分和算子的收敛速度的估计。
The convergence rate of the partial sums of the Fourier-Laplace series is also presented under certain conditions on best approximations .
-
利用级数的性质对调和级数活跃的性态作了讨论和研究,并利用它的活跃的性质,用一种新的反证法证明其发散性。
This paper studies the properties of the harmonic serles by using series properties , and gives a proof by contradiction for its divergence .
-
其根本原因就在于:调和级数去掉若干项后剩余下的项数相对于原调和级数的项数是否为一个低阶的无穷大。
What the most basic reason is : whether the progression 's remainders are infinity , compared to its lower one , after the removal of its amount of items .
-
本文首先对调和级数用反证法证明其发散,随后,将这种方法加以推广建立了判别正项发散的一种方法&加括号法,而这种方法也适用于一般项级数。
The paper first proves the diffusion of the harmonious progression by using reduction to absurdity , and then spreads this method to establish an approach to distinguish the diffusion of the Positive Item Congres-sion .
-
框架理论最初来源于信号处理,1952年,Duffin和Schaffer在研究非调和傅立叶级数时,提出了Hilbert空间框架的概念。
Fame theory derives from the signal processing . In 1952 , Duffin and Shaffer introduced the concept of frame for Hilbert spaces in order to study some deep problem in nonharmonic Fourier series .
-
随机非调和的Fourier级数
Random nonharmonic Fourier series
-
结合重力异常的特点,利用位场的调和性质,介绍了对重力位场数据应用调和级数法的曲化平方法。
By adequately combining the features of gravity anomaly and potential field , the authors present a new method which is called conversion of curved-surface data into horizontal-plane data of gravity potential field data .