量子限制效应

liànɡ zǐ xiàn zhì xiào yìnɡ
  • quantum confinement effect
量子限制效应量子限制效应
  1. 报道了关于3C-SiC纳米颗粒量子限制效应的实验证据。

    We report recent experimental evidence for the quantum confinement effect in 3C-SiC nanoparticles .

  2. 薄膜光致发光分析结果显示,薄膜中N的引入使Si空位缺陷增加,N掺杂纳米SiC薄膜发光呈现为典型的纳米SiC的量子限制效应与硅空位缺陷的综合发光。

    The PL analysis shows that nitrogen incorporating in the film will result in the increase of Si defect density , the PL of N doped nanocrystalline 3C-SiC thin films mainly origin from the quantum confinement effect and Si defect luminescent centers .

  3. 随着ZnO颗粒尺度的不断减小,其量子限制效应越来越明显;

    Its quantum confinement effects become more and more visible with decreasing in size of ZnO particles .

  4. 3C-SiC纳米颗粒量子限制效应的实验证据

    Experimental evidence for quantum confinement in 3C-SiC nanoparticles

  5. 通过紫外-可见吸收光谱、X-射线粉末衍射(XRD)、透射电镜(TEM)和高分辨透射电镜(HRTEM)对样品的结构及量子限制效应影响下的光学特性进行了表征;

    The nanoparticles were characterized by UV vis absorption spectra , X ray powder diffraction ( XRD ), transmission electron microscopy ( TEM ) and high resolution TEM ( HRTEM ) .

  6. 当金属纳米颗粒中电子的deBroglie波长已经可以和它的大小相比时,量子限制效应(QSE)就会出现。

    When the de Broglie wavelength of electrons inside a nanoscale metal particle is comparable to its size , the quantum size effects ( QSE ) appear .

  7. 由于量子限制效应,自组装生长的Ge量子点具有许多奇特的光学和电学性质,利用这些性质制备的器件,可能会在未来的集成电路和纳米电子学方面具有重要的应用前景。

    Due to the quantum confinement effect , the Ge quantum dots ( QDs ), grown by self-assembly , show many novel optoelectronic properties . The devices utilizing these properties may be potentially used in the future integrated-chip circuit and nanoelectronics .

  8. 1990年,英国科学家Canham首次观察到室温下多孔硅强的可见光致发光,并用量子限制效应进行了解释使多孔硅迅速成为世界范围内的研究热潮。

    It is reported firstly by CanHam in 1990 that porous silicon can exhibit visible photoluminescence at room temperature .

  9. 量子限制效应与多孔硅强可见光发射

    Quantum Confinement Effect and Strong Visible Light Emission from Porous Silicon

  10. 这种现象我们可以通过量子限制效应来解释。

    The phenomenon can be explain by the effect of quantum confinement .

  11. 非晶氮化硅纳米粒子的制备及量子限制效应

    Preparation and Quantum Confinement Effects of Amorphous Si_3N_4 nanoparticles

  12. 研究发现,随着量子限制效应的增强,受主跃迁能量会增加。

    It is found that the transition energy of acceptors increases with the enhancement of quantum confinement .

  13. 本文报道了非晶氨化硅纳米粒子的制备及量子限制效应。

    The preparation and the quantum confinement effects of amorphous St3N4 nanoparticles are reported in this paper .

  14. 我们对实验结果进行了分析和讨论,单纯的量子限制效应模型或表面态模型都无法解释多孔硅荧光光谱的温度效应。

    The quantum confinement effect or the surface state mechanism can not explain the phenomena in singles .

  15. 量子限制效应对δ掺杂GaAs/AlAs多量子阱中铍受主态寿命的影响

    Effect of quantum confinement on acceptor state lifetime in Be δ doped GaAs / AlAs multiple quantum wells

  16. 经碳注入氮气氛中退火及电化学腐蚀处理形成纳米硅镶嵌结构,因量子限制效应–表面复合效应而发光。

    Nanometer Si with embedded structure formed by C ~ + implantation-N2 annealing-anodization can emit blue light due to quantum confinement effect-surface recombination effect .

  17. 归纳起来,其发光机制以量子限制效应和发光中心两种模型为主;

    To sum up , two types of model have priority in explaining the origin and mechanism of visible PL in Si-base light-emitting materials .

  18. 本实验研究认为对发射稳定的红、橙光的多孔硅量子限制效应起主导作用,表面态起辅助作用,而且对两个不同的发光峰位,受量子限制效应的影响程度是不同的;

    It was discovered that the stable red and orange light-emitting was caused by quantum confinement and the surface state played an assistant role ;

  19. 碳化硅纳米颗粒由于量子限制效应和巨大的比表面积更是拥有许多体材料所不具备的性质。

    SiC nanocrystals ( NCs ) have many unique properties including the quantum confinement and big specific surface , which makes it different from bulk material .

  20. 基于多孔光致发光的量子限制效应模型,研究了多孔硅发光性质随温度的变化关系。

    The temperature dependence of photoluminescence ( PL ) for porous silicon is studied in detail in terms of the quantum confinement model of porous silicon .

  21. 硅纳米线由于特殊的光学及电学性能如量子限制效应及库仑阻塞效应等,在纳米电子器件的应用方面具有潜在的发展前景。

    Si nanowire is promising in application of nanoelectronic devices due to its specially optical and electronic properties such as quantum confinement effect and coulomb blockade effect .

  22. 多孔硅拥有独特的物理微结构和显著的量子限制效应,其结构和光学特点引起了众多科研者的广泛兴趣和大量研究。

    Porous silicon possesses special micro-structure and evident quantum confined effect , in which lots of researchers are interested and have done a large number of works about it .

  23. 结果表明:红光包括起源于量子限制效应的宽带及氧缺陷能级引起的分立峰;

    Experimental results indicate that the red PL consists of wide band , which originates from quantum confinement effect , and the distinguishable peaks are related to O impurities .

  24. 理论上分析计算了由应变和量子限制效应引起的自由激子的峰位移动,理论和实验符合很好。

    The energy shifts due to the strain and quantum confinement are calculated on the basis of deformation potential theory and Bastard 's method , showing good agreement with the experimental results .

  25. 硅纳米结构由于量子限制效应有许多不同于体硅的光学及光电性能,它在发光器件、光探测器件、光电集成器件以及传感器等领域有广阔的应用前景。

    Nano-silicon structure has many optoelectronic characteristics differ from bulk silicon due to its quantum confinement effect . It show extensive application prospect in light-emitting device , light-detector , optoelectronic integrated device , and sensor .

  26. 紫外可见光光谱分析表明,这类纳米结构薄膜具有1.0~2.9eV的光学带隙蓝移,并可用量子限制效应来解释其起源。

    Spectrophotometric measurements were performed for these samples in ultraviolet , visible and near-IR region , and show obvious blue-shift of the optical band gap as large as 1.0-2.0 eV in comparison with the bulk , which can be explained by quantum confined effect .

  27. 量子限制斯塔克效应及其在光开关中的应用

    Quantum - confined Stark effect and its application in optical switches

  28. 讨论了量子阱限制效应、激子的束缚能以及激子峰的形成,分析了量子阱的光电特性及量子阱表面光电压的形成和特点。

    In this paper , quantum well effect , exciton binding energy and the formation of excitonic peak are discussed .

  29. 在发光器件领域,SiC被认为是替代Si的理想材料,SiC量子点由于量子限制效应而导致的独特光电性能倍受人们的青睐。

    In the optical device arena , SiC was regarded as a promising substitute for Si . SiC nanoparticles have attracted much attention due to their unique optical and electrical properties arising from the quantum confinement effect .

  30. 不同形状量子阱的量子限制效应

    Quantum Confinement Effect in Different shaped Quantum Wells