齐次多项式
- homogeneous polynomial
-
论文证明了二维球面之间的三次齐次多项式映射f,当伸缩度为3时,在正交等价意义下f是唯一存在的。
It is proved in this paper that there is only one equivalent class ( under orthogonal transformations ) of homogeneous polynomial maps of degree 3 between two spheres if the dilatation of the maps is three .
-
构造了一个三次齐次多项式,然后再证明这个齐次多项式是一个三次代数极小超曲面。
In this paper we made a kind of triple homogeneous polynomial and proved that kind of homogeneous polynomial was a minimal algebraic hyper surface .
-
对于确定的轨道角动量状态,找到了一组完备且独立的角动量本征函数基,它们是坐标分量的齐次多项式,且满足Laplace方程。
For given orbital angular momentum states , we discover a complete set of independent base-functions , which are homogeneous polynomials in the components of the coordinate vectors and satisfy the Laplace equation .
-
平面齐次多项式系统的全局相图和平衡点的稳定性
Phase-portraits of plane homogeneous polynomial systems and the stability of origin
-
关于m次齐次多项式偏导数的一个算法原理
A Principle of calculus partial derivative of homogenous polynomial of degree m
-
灵敏度关系求取的多变量摄动法及其应用研究多元齐次多项式定号性判别方法
The Multi - variable Method of Sensitivity and Its Application DEFINITENESS OF MULTI VARIABLE HOMOGENEOUS POLYNOMIAL
-
本文基于投影尺度引入齐次多项式特征值问题的条件数,其优点是与系数矩阵的尺度化无关,因而也许会有较广泛的应用。
The condition numbers defined are independent of the scaling of the coefficient matrices , and therefore may have more applications .
-
当高次项是四次齐次多项式时,得到了单调的充要条件。
The necessary and sufficient conditions for the monotonicity of the period function are obtained when the higher degree is four .
-
具有m-齐次结构多项式方程组的同伦算法
Homotopy Methods for Solving Polynomial Systems with Multi-homogeneous Structure
-
齐次对称多项式的分解原理与方差平均不等式猜想
The Factoring Principle of Homogeneous and Symmetric Polynomials and a Conjecture for Inequality of Variance Mean
-
关于秩-1凸与拟凸的一个注记(英文)证明了齐次奇次多项式或三次多项式的情形下秩-1凸与拟凸的等价性。
We prove the equivalence between rank-one convex and quasiconvex when the function is a homogenous polynomial of odd order or a polynomial of order 3 .
-
用齐次同伦函数求多项式方程组的所有解
Finding All Solutions to Polynomial Systems with Homogeneous Homotopy Function
-
目的给出非齐次项为拟多项式的常系数非齐次线性微分方程一个特解公式。
Aim Giving a formula to the linear ordinary differential equations with constant coefficients and quasi-polynomial non-homogeneous terms .
-
本文首先用m&正齐次算子定义了多项式,讨论了它的简单性质。
In this paper , firstly we use m-positive homogeneous operator theorem to define the polynomial and discuss its simple properties .