齐次线性方程

qí cì xiàn xìnɡ fānɡ chénɡ
  • homogeneous linear equations
齐次线性方程齐次线性方程
  1. 采用组合电路Hopfield模型,通过相容状态建立的齐次线性方程组的基础解系,提出了组合电路最优Hopfield模型存在性的实用判定方法,并给出了计算实例。

    By use of Hopfield model and basis solution of homogeneous linear equations which are established in accordance with consistent state , a practical decision method for the existence of optimal Hopfield model of combinational circuits is provided . Finally , several examples are given .

  2. 齐次线性方程组解理论的一个应用

    An Appliance on the Solution Theorem of System of Homogeneous Linear Equations

  3. 给出了当齐次线性方程组的系数矩阵是奇异H矩阵时的矩阵多分裂多参数松弛算法,并讨论其收敛性。

    A general framework of matrix multi-splitting multi-parameter relaxation methods for solving system of linear equations for singular H-matrices set up in this paper . Its convergence is discussed .

  4. 证得非交换主理想整环R上右齐次线性方程组基础解系存在定理,给出R上右线性方程组解的表示。

    This paper proves the existence theorem of the system of basic solutions for the right homogeneous linear equation sets over a non-commutative principal ideal domain R and gives the representation of the solutions for the right linear equation sets over R.

  5. Excel中“规划求解”解决日常工作中遇到的减少成本与增加利润及非齐次线性方程组解的问题。

    Through the " solver " of Excel , we can solve two kinds of question which are encountered in our routine . One is the issue of costs reduction & profits increase , the other is the issue of solving the non-homogeneous linear equation .

  6. 非齐次线性方程组通解的一种简便求法

    A Simple Approach to General Solution for Nonhomogeneous Linear Equations

  7. 有非零解的齐次线性方程组的应用

    The Application of Homogeneous Linear Equation System with Non - zero Solution

  8. 非齐次线性方程组的同解类

    The Sorts of Same Solution for Solvable Nonhomogeneous Linear Equations

  9. 基于非齐次线性方程组的系统级故障诊断方法

    A method of the system-level fault diagnosis based on the non-idempotent linear equations

  10. 齐次线性方程组基础解系列处理法

    Column Action Method for Fundamental System of Solutions of Homogeneous of Linear Equations

  11. 齐次线性方程组正交的基础解系的一种简便求法

    A Simple Method for the Orthogonal Fundamental Solution of Homogeneous Linear Equation System

  12. 齐次线性方程组的基础解系的一些性质

    Some Properties of a Basic System of Solutions in a System of Homogeneous Linear Equations

  13. 常系数齐次线性方程临界情形与零解不稳定的几则判据

    Lyapunov Instability Criteria and critical condition of the homogeneous linear differential equation with real coefficients

  14. 本文给出了刊用分块矩阵得出齐次线性方程组基础解系的简单方法。

    This paper presents a simple method of giving a fundamental systemof linear homogeneous systems .

  15. 给出了一个判定齐次线性方程组存在全非零解的充分必要条件。

    We present a necessary and sufficient conditions of homogeneous linearity equations existing all-nonzero solution .

  16. 借助于辅助变量,或辅助平面,提出了齐次线性方程组的图解法。

    With the help of auxiliary variables or plane , a graphical solution for homogeneous linear equations is presented .

  17. 用矩阵的初等行变换求齐次线性方程组的标准正交解系

    Using the Elementary Line Transformation of Matrix Extract the Normal Orthogonal System of Solution of Homogeneous Linear System of Equations

  18. 本文对这一几何问题利用齐次线性方程组给予了代数方法的又一种证明。

    This article given another kind of proof using algebra method by system of homogeneous linear equations to the geometry question .

  19. 给出了求齐次线性方程组正交的基础解系的一个简便方法和一个应用实例。

    A simple method for the orthogonal fundamental solution of homogeneous linear equation system and the example in its application are given .

  20. 由非齐次线性方程组解的结构给出静态工作点的基础解;

    Then , the basic solution set of conical magnetic bearing static operation points is given based on the solution structure of linear equation group .

  21. 给出求以已知一组线性无关的向量为基础解系的齐次线性方程组的方法。

    This note presents a method to solve a homogeneous system of linear equations by giving linear independent vectors as a system of basic solutions .

  22. 本文给出了线性空间中亚子空间的概念,讨论了亚子空间的性质和维数,并将其应用到有解的非齐次线性方程组中去。

    In this paper , we give the definition of meta subspace of linear space , and discuss the propertys and dimension of meta subspace .

  23. 在非齐次线性方程组中引入基础解系的概念,并在此基础上进一步讨论了解的结构,以及基础解系间的过渡矩阵。

    This paper introduces the concept of basic system of solutions for the nonhomogeneous linear equation set , and further discusses its structure and transition matrix .

  24. 将行列式的值、矩阵的秩、齐次线性方程组的解等知识运用于向量组线性相关性判定,归纳出六种判定向量组线性相关性的方法。

    The judging methods of the vectors group related dependence from determinant values , rank of matrix , solution of system of linear equations etc were studied .

  25. 引入传统的数学方法:线性方程组表示页结构之间的关系及通过求解齐次线性方程组来计算页的的键值。

    The paper draws into convertional mathematical technique using linear equation to express structure between Web pages and solving linear equation to give PageRank of Web page .

  26. 在线性方程组有解判别定理的基础上,给出了一个判定非齐次线性方程组存在全非零解的方法。

    On the basis of the solution identification theorem in linear equations , a method is presented to ascertain whether there exists all-nonzero solutions to an inhomogeneous linear equation .

  27. 讨论齐次线性方程组解空间的进一步性质,以及在矩阵秩等式证明中的应用。

    This paper discusses the further characteristic of the homogeneous system of linear equations solution space , as well as the application in the proof of matrix rank equality .

  28. 利用齐次线性方程组解的理论讨论矩阵的秩,给出几个关于矩阵秩的著名不等式的证明,并证明了两个命题。

    The article discusses rank of a matrix by the solution theorem of system of homogeneous linear equations , and proves several famous inequalities and two propositions on rank of a matrix .

  29. 同时,给出了判别广义严格对角占优矩阵(非奇M矩阵)简单实用的方法,该方法只需要解一个非齐次线性方程组即可。

    A simple and practicable method of judging generalized strictly diagonally dominant matrices and nonsingular M-matrices is introduced . When this method is adopted , only a non-homogeneous linear equation is needed to solve .

  30. 通过求解一组低阶齐次线性方程而得到一组最优激励,检查标称网络在最优激励下的被屏蔽支路集,即可对故障定位。

    By solving a set of low order homogeneous linear equations to obtain a optimum stimulus , and by checking the screened branches in the nominal network excited by this optimum stimulus , the faulty branches can be located .