决策树分析法的决策树(decision tree)
一般都是自上而下的来生成的。每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树。 决策树就是将决策过程各个阶段之间的结构绘制成一张箭线图,我们可以用下图来表示。选择分割的方法有好几种,但是目的都是一致的:对目标类尝试进行最佳的分割。从根到叶子节点都有一条路径,这条路径就是一条“规则”。决策树可以是二叉的,也可以是多叉的。对每个节点的衡量:1) 通过该节点的记录数2) 如果是叶子节点的话,分类的路径3) 对叶子节点正确分类的比例有些规则的效果可以比其他的一些规则要好。
事件树和决策树分析法的区别
首先教材认为事件树是故障风险发生后的分析,即故障如果没发生或者有不发生的可能都不能使用事件树,因此此时没有构成风险事件;而决策树不是,其决策时是专门针对不确定事件的发生;其次事件树发生的可能性仅仅有两种,要么成功要么失败;而决策树不是这样的,其是根据概率发生的可能性会有多种情况来应对分析。联系:它们都开始于初因事项或是最初决策,同时由于可能发生的事项及可能做出的决策,需要对不同路径和结果进行建模。区别:事件树发生的结果是互斥性后果,比如说发生火灾是一个结果,不发生火灾是另一个结果,事情只有这两种互斥性的后果。而决策树是从多种方案中选出最好的那种结果,决策树并不强调后果的互斥,它的关注点只在最高期望值的结果上。且事件树是定性与定量分析,而决策树仅仅是定量分析。
决策树法分为那几个步骤
1、特征选择特征选择决定了使用哪些特征来做判断。在训练数据集中,每个样本的属性可能有很多个,不同属性的作用有大有小。因而特征选择的作用就是筛选出跟分类结果相关性较高的特征,也就是分类能力较强的特征。在特征选择中通常使用的准则是:信息增益。2、决策树生成选择好特征后,就从根节点触发,对节点计算所有特征的信息增益,选择信息增益最大的特征作为节点特征,根据该特征的不同取值建立子节点;对每个子节点使用相同的方式生成新的子节点,直到信息增益很小或者没有特征可以选择为止。3、决策树剪枝剪枝的主要目的是对抗「过拟合」,通过主动去掉部分分支来降低过拟合的风险。【简介】决策树是一种解决分类问题的算法,决策树算法采用树形结构,使用层层推理来实现最终的分类。
【记录我的PMP成长之路】EMV和决策树分析
EMV(Expected Monetary Value)预期货币价值:是一种对概率和各种可能情景影响所做的平衡。一般会有至少两种及以上的方案做对比,帮助决策人选择会提供更大的潜在收益的方案。 在PMP里面是在第十一章项目风险管理里面出现的,EMV和决策树分析可以帮助作出复杂的决策。决策时从多种方案中选择一个行动方针的认知过程,每一个决策过程都会产生一个最终选择。 最好的情景(Best Case)BC 最坏的情景(Worst Case)WC 最可能的情景(Most likely Case)MLC Total EMV=BC+WC+MLC 决策树分析(Decision Tree Analysis) 百科解释:是一种运用概率与图论中的树对决策中的不同方案进行比较,从而获得最优方案的风险型决策方法。图论中的树是连通且无回路的有向图,入度为0的点称为树根,出度为0的点称为树叶,树叶以外的点称为内点。 决策树由树根(决策节点)、其他内点(方案节点、状态节点)、树叶(终点)、树枝(方案枝、概率枝)、概率值、损益值组成。 在风险管理里面决策树由一个决策图和可能的结果(包括资源成本和风险)组成,用来创建到达目标的规划。决策树建立并用来辅助决策,是一种特殊的树结构。 【题目一】 公司已经提交了新产品开发的建议。该项目的开发成本是50万元,开发成功的概率预计为70%。如果开发不成功,该项目将被终止。如果成功,制造商必须决定是在一个新的生产线还是在经改造的生产线上制造该产品。如果产品需求高的话,新生产线增加的收入为120万元,而经改造生产线增加的收入为85万元。如果产品需求低的话,新生产线增加的收入为70万元,而经改造生产线增加的收入为72万元。所有这些收入增量,未减去50万元开发成本,新生产线30万元,改造生产线10万元。高需求概率估计为40%,低需求概率估计为60%。 题目题干看着很复杂,需要梳理清楚每条分支,算出每条分支的预期货币价值即EMV。EMV=概率x收益引申出第二个问题 开发的EMV=改造生产线总EMVx成功率70%+失败率30%x(固定成本-50万元)=-2.96万元 不开放的EMV=0 在做决策树分析时,任何金额大于零的决策标志着一个积极的决策。在多个情景需要进行比较时,应该选择其中收益最高的一个。【题目二】 用蒙特卡洛分析后,如果自制,花100万,项目成功的概率是60%挣300万,失败的概率是40%赔100万。如果项目外包,花150万,项目成功概率是80%挣300万,20%概率赔100万,请问是选择自制还是外包?
决策树主要解决什么问题
决策树主要解决的问题介绍如下:决策树是一种解决分类问题的算法。决策树,是一种通过图示罗列解题的有关步骤以及各步骤发生的条件与结果的一种方法。决策树不仅可以帮助人们理解问题,还可以帮助人们解决问题。每个决策或事件都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树。决策树一般由方块结点、圆形结点、方案枝、概率枝等组成,方块结点称为决策结点,由结点引出若干条细支,每条细支代表一个方案,称为方案枝;圆形结点称为状态结点,由状态结点引出若干条细支,表示不同的自然状态,称为概率枝。每条概率枝代表一种自然状态。决策树的适用范围:科学地决策是现代管理者的一项重要职责。我们在企业管理实践中,常遇到的情景是:若干个可行性方案制定出来了,分析一下企业内、外部环境,大部分条件是己知的,但还存在一定的不确定因素。每个方案的执行都可能出现几种结果,各种结果的出现有一定的概率,企业决策存在着一定的胜算,也存在着一定的风险。这时,决策的标准只能是期望值。即,各种状态下的加权平均值。针对上述问题,用决策树法来解决不失为一种好的选择。
简述决策树的原理及过程
决策树是一种常见的机器学习算法,它可以用来进行分类和回归分析,并且易于理解和解释。决策树的原理和过程如下:原理:决策树是一种基于树形结构的分类模型,它通过一系列的决策来对数据进行分类或预测。在决策树中,每一个节点代表一个特征或属性,每一条边代表一个判断或决策,而每一个叶子节点代表一个分类或预测结果。通过对样本数据进行不断地划分和分类,最终可以得到一棵树形结构的分类模型。过程:决策树的构建过程可以分为以下几个步骤:(1) 特征选择:根据数据集的不同特征,选择一个最优的特征作为根节点。(2) 特征划分:根据选择的特征,将数据集分成多个子集,每个子集对应一个叶子节点。(3) 递归构建:对于每个子集,递归地进行特征选择和特征划分,直到所有的子集都可以完全分类或预测。(4) 剪枝处理:对构建好的决策树进行剪枝处理,以防止过拟合和提高泛化能力。(5) 模型评估:使用测试数据集对构建好的决策树进行评估和优化,以提高分类或预测的准确性和稳定性。总之,决策树是一种基于树形结构的分类模型,其原理和过程包括特征选择、特征划分、递归构建、剪枝处理和模型评估等步骤。通过构建决策树,可以对数据进行分类和预测,并且易于理解和解释,是一种常见的机器学习算法。
利用决策树分析法进行决策的具体步骤是什么
问:简述利用决策树分析法进行决策的具体步骤? 校解析答案: 1、问题的决策目标是,选择什么方案增加服装资源,保障货源供应,满足市场需求,以使企业服装经营收益值最大。 2、本问题只有一个决策点,是一个单级决策问题,由于有三个备选方案,所以有三条方案枝,每个方案枝末端对应一个机会点。 3、自右至左进行分析计算。 我是云南会计独立本科段的考生,这次报了《管理系统中计算机应用》和《国际贸易理论与实务》,两科都及格了,感谢网校,感谢两位老师! 江西省的成绩出来了,《古代汉语》考了三次,现在终于通过了,75.5分的成绩,谢谢张老师!现在可以毕业啦!
决策树分析方法的基本步骤
决策树分析方法的基本步骤1.绘制决策树图。从左到右的顺序画决策树,此过程本身就是对决策问题的再分析过程。2.按从右到左的顺序计算各方案的期望值,并将结果写在相应方案节点上方。期望值的计算是从右到左沿着决策树的反方向进行计算的。3.对比各方案的期望值的大小,将期望值小的方案(即劣等方案)剪掉,所剩的最后方案为最佳方案。决策树(简称DT)利用概率论的原理,并且利用一种树形图作为分析工具。其基本原理是用决策点代表决策问题,用方案分枝代表可供选择的方案,用概率分枝代表方案可能出现的各种结果,经过对各种方案在各种结果条件下损益值的计算比较,为决策者提供决策依据。优点:1) 可以生成可以理解的规则;2) 计算量相对来说不是很大;3) 可以处理连续和种类字段;4) 决策树可以清晰的显示哪些字段比较重要。缺点:1) 对连续性的字段比较难预测;2) 对有时间顺序的数据,需要很多预处理的工作;3) 当类别太多时,错误可能就会增加的比较快;4) 一般的算法分类的时候,只是根据一个字段来分类。
决策树分析方法的基本步骤 快速找到最佳方案
基本步骤:从左到右顺序画一个决策树,这是一个决策问题的重新分析过程。从右到左计算每个方案的期望值,并将结果写在对应的方案节点上方。的期望值是沿着决策树的相反方向从右到左计算的。比较各方案的期望值,砍掉期望值低的方案(即次优方案),留下最后一个方案作为最佳方案。特征选择:特征选择决定了使用哪些特征进行判断。在训练数据集中,每个样本可能有很多属性,不同的属性有不同的作用。因此,特征选择的作用就是筛选出与分类结果相关性高的特征,即分类能力强的特征。特征选择常用的准则是:信息增益。决策树的生成:选择一个特征后,从根节点触发,为每个节点计算所有特征的信息增益,选择信息增益最大的特征作为节点特征,根据该特征的不同值建立子节点;对每个子节点使用相同的方法来生成新的子节点,直到信息增益很小或者没有特征可供选择。决策树的剪枝:剪枝的主要目的是通过主动去除部分分支来对抗“过拟合”,降低过拟合的风险。决策树方法的优点:1.决策树列出了决策问题的所有可行解和各种可能的自然状态,以及各种状态下每个可行方法的期望值。2.可以直观地展示整个决策问题在不同阶段的时间和决策顺序的决策过程。3.应用于复杂的多阶段决策时,阶段明显,层次清晰,便于决策主体集体研究,能够慎重考虑各种因素,有利于做出正确决策。
如何运用决策树进行决策分析
决策树分析法是通过决策树图形展示临床重要结局,明确思路,比较各种备选方案预期结果进行决策的方法。 决策树分析法通常有6个步骤。 第一步:明确决策问题,确定备选方案。对要解决的问题应该有清楚的界定,应该列出所有可能的备选方案。 第二步:绘出决策树图形。决策树用3种不同的符号分别表示决策结、机会结、结局结。决策结用图形符号如方框表示,放在决策树的左端,每个备选方案用从该结引出的]个臂(线条)表示;实施每一个备选方案时都司能发生一系列受机遇控制的机会事件,用图形符号圆圈表示,称为机会结,每一个机会结司以有多个直接结局,例如某种治疗方案有3个结局(治愈、改善、药物毒性致死),则机会结有3个臂。最终结局用图形符号如小三角形表示,称为结局结,总是放在决策树最右端。从左至右机会结的顺序应该依照事件的时间先后关系而定。但不管机会结有多少个结局,从每个机会结引出的结局必须是互相排斥的状态,不能互相包容或交叉。 第三步:明确各种结局可能出现的概率。可以从文献中类似的病人去查找相关的概率,也可以从临床经验进行推测。所有这些概率都要在决策树上标示出来。在为每一个机会结发出的直接结局臂标记发生概率时,必须注意各概率相加之和必须为1.0。 第四步:对最终结局用适宜的效用值赋值。效用值是病人对健康状态偏好程度的测量,通常应用0-1的数字表示,一般最好的健康状态为1,死亡为0。有时可以用寿命年、质量调整寿命年表示。 第五步:计算每一种备远方案的期望值。计算期望值的方法是从"树尖"开始向"树根"的方向进行计算,将每一个机会结所有的结局效用值与其发生概率分别相乘,其总和为该机会结的期望效用值。在每一个决策臂中,各机会结的期望效用值分别与其发生概率相乘,其总和为该决策方案的期望效用值,选择期望值最高的备选方案为决策方案。 第六步:应用敏感性试验对决策分析的结论进行测试。敏感分析的目的是测试决策分析结论的真实性。敏感分析要回答的问题是当概率及结局效用值等在一个合理的范围内变动时,决策分析的结论会不会改变。
决策树分析问题时有哪些步骤?
决策树法的几个关键步骤是:1、画出决策树,画决策树的过程也就是对未来可能发生的各种事件进行周密思考、预测的过程,把这些情况用树状图表示出来.先画决策点,再找方案分枝和方案点.最后再画出概率分枝。2、由专家估计法或用试验数据推算出概率值.并把概率写在概率分枝的位置上。3、计算益损期望值,从树梢开始,由右向左的顺序进行.用期望值法计算.若决策目标是盈利时,比较各分枝,取期望值最大的分枝,其他分枝进行修剪。扩展资料决策树的优点1、决策树易于理解和实现. 人们在通过解释后都有能力去理解决策树所表达的意义。2、对于决策树,数据的准备往往是简单或者是不必要的 . 其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。3、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。4、 在相对短的时间内能够对大型数据源做出可行且效果良好的结果。5、对缺失值不敏感6、可以处理不相关特征数据7、效率高,决策树只需要一次构建,反复使用,每一次预测的最大计算次数不超过决策树的深度。决策树的缺点1、对连续性的字段比较难预测。2、对有时间顺序的数据,需要很多预处理的工作。3、当类别太多时,错误可能就会增加的比较快。4、一般的算法分类的时候,只是根据一个字段来分类。5、在处理特征关联性比较强的数据时表现得不是太好
决策树分析法是什么?
如下:决策树分析法是指分析每个决策或事件(即自然状态)时,都引出两个或多个事件和不同的结果,并把这种决策或事件的分支画成图形,这种图形很像一棵树的枝干,故称决策树分析法。选择分割的方法有好几种,但是目的都是一致的:对目标类尝试进行最佳的分割。一般都是自上而下的来生成的。每个决策或事件(即自然状态)都可能引出两个或多个事件,导致不同的结果,把这种决策分支画成图形很像一棵树的枝干,故称决策树。 决策树就是将决策过程各个阶段之间的结构绘制成一张箭线图。优点:1、可以生成可以理解的规则;2、计算量相对来说不是很大;3、可以处理连续和种类字段;4、决策树可以清晰的显示哪些字段比较重要。