克拉珀龙
- 网络Clapeyron
-
我们回到克拉珀龙方程,考虑这个近似之后共存曲线的dp/dT等于dH除以,再除以气体的体积。
If you go back to the to the Clapeyron equation up here , T with this approximation then dp / dT , V the coexistence line , is delta H divided by T V gas .
-
根据克拉珀龙方程、分子流运动论的Knudsen公式等理论,确定达到额定压力(真空度)所需的时间(即装置的起动时间)。
The time which the vacuum degree can reach the decided value ( i.e. starting time of the equipment ) is calculated by Clapeyron ′ s equation of gas state , Knudsen theory of molecular flow and etc.
-
升华或者蒸发,这就是克劳修斯&克拉珀龙方程。
Sublimation or vaporization , and this is the Clausius-Clapeyron equation .
-
这是你会看到的另外一种,克劳修斯-克拉珀龙方程。
So that 's another form that you 'll see .
-
根据克劳修斯&克拉珀龙方程,你会得到一条直线。
And according to Clausius-Clapeyron , that should give you a straight line .
-
因为这个共存曲线,相图和克拉珀龙方程,都是对纯物质得到的。
Because this gas liquid coexistence line , this diagram , and this Clapeyron equation , is all done for a pure substance .
-
我们做一个简短的回顾,然后继续讨论克劳修斯-,克拉珀龙方程,然后看我们能把这个方程推广到什么地步。
Let 's do a one minute review , & and then move onto the Clausius-Clapeyron equation and see how far we can go on that .