双光子显微镜

  • 网络Two-photon Microscope;two-photon microscopy
双光子显微镜双光子显微镜
  1. 随机扫描双光子显微镜中飞秒激光传输特性研究

    Research on the Propagation Characteristics of Femtosecond Laser Pulses in Random Access Two-photon Microscope

  2. 双光子显微镜捕获的电影图像于是就记录了所谓的肿瘤微环境内以前不能观察到的景象。

    Movies captured with the two-photon microscope then recorded the unfolding scene in the so-called tumor microenvironment .

  3. 作者根据这个特性,采用双光子显微镜可以一秒一秒地跟着活体细胞内pH值变化。

    The authors used this feature in two-photon microscopy to track second-by-second pH changes in living cells .

  4. 但是放在双光子显微镜下检验的话,就不算薄。

    For examination under a microscope , it 's fine .

  5. 研究人员使用了一种称为双光子显微镜的高端仪器,从而能够观察活组织里的情况。

    The scientists used a leading-edge instrument called a two-photon microscope , able to peer inside living tissues .

  6. 超短光脉冲的平均功率和脉宽及锁模状态对双光子显微镜成象的影响

    The effects of mean power , pulse width and mode locking state of femtosecond laser on two photon fluorescence imaging

  7. 采用先进的双光子显微镜成像系统,研究人员发现了一些特定神经元中对这种饥饿依赖的嗅觉响应改变。

    Using two-photon microscopy , a state-of-the-art imaging system , the researchers found starvation-dependent changes of olfactory response in specific neurons .

  8. 相比于常规的检流计镜扫描,声光偏转器可实现的扫描范围较小,导致双光子显微镜的扫描视场较小,因而限制了对更大神经元网络的研究。

    Compared with the conventional galvanometer scanner , the scanning range of AOD is smaller , which leads to a small field of view ( FOV ) of TPM and therefore limits its applications in large neuronal networks .

  9. 第四章利用搭建完成的双光子荧光显微镜进行了实验,并分析了实验结果。

    Chapter four contains the experiments carried out and the analysis of the results .

  10. 导出了共焦双光子荧光显微镜探测光强随荧光波长变化的解析表达式。

    The analytic expressions of the fluorescent intensity are derived in two_photon fluorescence confocal imaging .

  11. 由此发展而来的双光子荧光显微镜为生命科学研究做出了重要的贡献。

    The two-photon fluorescence microscope which result from this has made important contributions for the life science research .

  12. 第二章从基本原理出发,在理论上分析了双光子荧光显微镜的成像特点,推导了双光子荧光探测公式,并得到了双光子共焦显微镜的点扩散函数。

    Chapter two analyzes the two-photon imaging characteristics theoretically and gets the point spread function of two-photon confocal microscopy .

  13. 第三章介绍了双光子荧光显微镜系统的几个主要组成部分,说明了各部分的要求,研制了新型的光纤扫描探头。

    Chapter three gives a brief introduction of building the two-photon imaging system and develops a new type of optical scanning fiber .

  14. 双光子荧光显微镜通过对样品在双光子激发后发出的荧光进行探测,实现样品的三维成像。

    The two-photon fluorescence microscopy has been used for three-dimensional imaging by detecting the fluorescence emitting from the specimen when absorbing two photons .

  15. 本文从一般的荧光和荧光显微镜理论出发,引出了双光子荧光显微镜的概念;

    In this dissertation , the concept of the two-photon fluorescence microscopy is brought out based on the theory of fluorescence and fluorescence microscopy .

  16. 与普适性荧光显微镜、及激光扫描共焦显微镜的一个重要的不同之处在于:双光子荧光显微镜要求荧光探针具有较高的双光子荧光活性吸收截面。

    Two-photon fluorescence microscope requires fluorescent probes have larger two-photon excited fluorescence action cross section (φ×δ), that is an important difference with common or confocal microscope .

  17. 双光子激光扫描显微镜中折射率失配引起的图象变形研究

    Image distortions of two-photon laser scanning microscopy induced by refractive - index mismatch of coverslips

  18. 研究了不同荧光波长对双光子荧光共焦显微镜横向、纵向分辨率和光斑强度的影响。

    The numerical results show that the transverse resolution , the axial resolution , and the intensity of the spot increase as the rate of fluorescent wavelength to illustrated wavelength increases .

  19. 双光子激光扫描荧光显微镜及其应用

    Two-photon laser scanning fluorescence microscopy and Its Applications

  20. 文章对双光子激光扫描荧光显微镜的原理及其应用进行了综述。

    The principle of two-photon laser scanning fluorescence microscopy and its applications are reviewed .

  21. 随着双光子技术的发展,双光子荧光显微镜在生命科学的研究中已经成为最重要的成像工具。

    With the developments of technologies based on two-photon , two-photon fluorescence microscopy is becoming an essential imaging system in the research on life science .

  22. 大多数单光子荧光探针的双光子吸收截面比较小(50GM),阻碍了它们在双光子荧光显微镜上的使用。

    Moreover , most of the one-photon fluorescent probes used for TPM have low TP cross sections (δ 50GM ) that limit their use in TPM .