度规张量

  • 网络Theconjugatemetrictensor;The metric tensor
度规张量度规张量
  1. 引力场的度规张量及行星运动的广义相对论效应

    The Metric Tensor of Gravitational Field and the General Relativity Effect in Planetary Motion

  2. 广义相对论告诉我们,时空结构由度规张量表示,度规张量由引力场方程确定。

    The spacetime structure is expressed by the metric tensor and the metric tensor is confirmed by the Einstein field equation in the general relativity theory .

  3. 在Einstein引力作用量中引入Wevl张量的平方项,得到有度规张量高阶导数项的引力场方程,考虑其弱场线性近似解,给出了牛顿极限,并讨论了某些新结果。

    The field equations containing higher than second derivatives of the metric are obtained by adding the squared Weyl conformal Curvature term to the action for the Einstein theory of gravity . The Newtonian limit is given in first approximation and some new results are discussed .

  4. 然后由Brane度规和五维能动张量推得五维爱因斯坦方程,积分得到Brane边界条件,应用到爱因斯坦方程得到与Friedmann类似的方程。

    Then obtained the five-dimensional Einstein equation from Brane metric and five-dimensional energy-momentum tensor . Integrate it , got two Brane junction conditions . Applied to the Einstein equation , found an equation analogous to Friedmann equation .