度规张量
- 网络Theconjugatemetrictensor;The metric tensor
-
引力场的度规张量及行星运动的广义相对论效应
The Metric Tensor of Gravitational Field and the General Relativity Effect in Planetary Motion
-
广义相对论告诉我们,时空结构由度规张量表示,度规张量由引力场方程确定。
The spacetime structure is expressed by the metric tensor and the metric tensor is confirmed by the Einstein field equation in the general relativity theory .
-
在Einstein引力作用量中引入Wevl张量的平方项,得到有度规张量高阶导数项的引力场方程,考虑其弱场线性近似解,给出了牛顿极限,并讨论了某些新结果。
The field equations containing higher than second derivatives of the metric are obtained by adding the squared Weyl conformal Curvature term to the action for the Einstein theory of gravity . The Newtonian limit is given in first approximation and some new results are discussed .
-
然后由Brane度规和五维能动张量推得五维爱因斯坦方程,积分得到Brane边界条件,应用到爱因斯坦方程得到与Friedmann类似的方程。
Then obtained the five-dimensional Einstein equation from Brane metric and five-dimensional energy-momentum tensor . Integrate it , got two Brane junction conditions . Applied to the Einstein equation , found an equation analogous to Friedmann equation .