柯西中值定理
- 网络Cauchy's Mean Value Theorem;Cauchy;Cauchy’s Mean Value Theorem
-
柯西中值定理的一个证明
A way to prove cauchy 's mean value theorem
-
R~n中柯西中值定理的的渐近性
The Asymptotic Behavior of ξ of Cauchy Mean Theorem in Rn
-
构造一行列式函数将柯西中值定理推广。
Construct a determinant function to popularize Cauchy theorem of mean .
-
柯西中值定理的推广及其中间点的渐近性
Extension of Cauchy Mean Value Theorem and Asymptotic Property of Intermediate Point
-
本文多角度介绍了柯西中值定理的证明方法和应用。
An Asymptotic Property for the Median Point of Cauchy Mean-value Theorem ;
-
睾丸激素的功能柯西中值定理在多元函数中的推广
The popularization of Cauchy mie-value theorem in multivariate function
-
柯西中值定理的复合证法
Probe into the Testifying Methods of Cauchy Median Theorem
-
利用一个新的命题证明柯西中值定理;
Utilize a new proposition can be very convenient to proof Cauchy theorem of mean .
-
用分析法找到一个较简洁的辅助函数证明柯西中值定理;
We find a simpl function using the analytic method and proof Cauchy theorem of mean .
-
积分型柯西中值定理中值点的变化趋势
On the change trends of mean value point in Cauchy mean value theorem of integral type
-
增生算子与单调算子的特征值问题及扰动定理利用插值法证明推广的柯西中值定理
The Eigenvalue Problem and Perturbation Theory of Accretive and Monotone Operators ; The Proof of the Generalized Cauchy Mean-value Theorem with Method of Interpolation
-
给出柯西中值定理的一个新的证法,说明柯西中值定理也可由拉格朗日中值定理导出。
This paper gives the new method to prove the Cauchy Mean Value Theorem , which also may be deduced from the Lagrange Mean Value Theorem .
-
文章给出罗尔中值定理的一个推论及给出辅助函数新的构造方法,来证明拉格朗日中值定理和柯西中值定理。
This paper provides an inference of Rolle mean value theorem and a new structure method of auxiliary function so as to prove Lagrange mean value theorem and Cauchy mean value theorem .
-
提出罗尔定理证明一类存在性问题的方法,采用拉格朗日中值定理或柯西中值定理来证明这类问题往往需要构造精巧的辅助函数,我们还指出了这种方法的一般性。
We present a general method to prove a class of problems by Rolle ′ s theorem , which need make tricky function by Langrange or Cauchy mean value theorem , and point out our method is feasible for these problems .
-
本文简洁地综述笔者已给出的第一、第二积分中值定理、拉格朗日与柯西微分中值定理中间点在较弱条件下的渐近估计式。
This paper gives a brief summary on the asympotic estimations of the intermediate point of the first and second integral mean value theorems as well as the Lagrange and Cauchy differential mean value theorems got by the author .
-
通过分析要证的结论,找到一个满足罗尔定理全部条件的新辅助函数,使拉格朗日和柯西微分中值定理的证明变得更为简单明了。
The paper examines a new auxiliary function by analysis of the conclusion to be proved , which makes the proving of differential mean valve theorem , such as Lagrange and Cauchy mean valve theorem , much simpler and clearer .
-
柯西-黎曼微分方程利用插值法证明推广的柯西中值定理
The Proof of the Generalized Cauchy Mean-value Theorem with Method of Interpolation