格林定理

  • 网络Green's Theorem;Green’s theorem
格林定理格林定理
  1. 该文首先综述现有的对几何矩进行快速计算的顺序算法,然后用数字实验比较Delta方法、多线段积分方法、以及Li和Shen的格林定理法的性能。

    We investigate in this paper the previously used sequential moment computation methods , and then compare the performances of Delta method , multiple line segment integral method , and Li and Shen 's Green 's theorem method by digital experiments .

  2. 国外学者运用微分对策方法给出了共同财产渔业资源模型,并应用格林定理进行了求解。

    The foreign scholars have given a model of common fishery resource , and the solving method of the model is given too with the Green 's theorem . The method , nevertheless , is very troublesome and difficult to be employed .

  3. 研究一类声波反散射的传输问题,用格林定理和单双层位势的跳跃关系刻画了相应远场模式U(V)的闭包型空间。

    This paper discusses the inverse scattering problem with transmission boundary condition . Green 's theorem and the jump relation of the single - layer and double - layer potentials are used to characterize spaces of the form closure of the far field patterns U ( V ) .

  4. 用格林定理求解磁矢势A

    Magnetic vector potential solved with the use of Green ′ s theorem

  5. 旋度也出现了,那就是格林定理。

    That was Greene 's theorem .

  6. 它又被叫做高斯&格林定理,或者就是高斯定理,这取决于你想说谁。

    It is also known as the Gauss-Green theorem or just the Gauss theorem , depending in who you talk to .

  7. 格林定理及其应用、三重积分、空间中的线积分和面积分、散度定理、斯托克斯定理应用。

    Green 's theorem and applications , triple integrals , line and surface integrals in space , Divergence theorem , Stokes'theorem ; applications .

  8. 论文首先以三维拉普拉斯方程作为基本控制方程,应用第二格林定理,建立线性频域内的积分方程。

    Taking 3D Laplace equation as governing equation and applying to the second-order Green identity , an integration equation is founded in linear frequency-domain .

  9. 这就是最终的证明了,证明的思路和证明格林定理的是一样的。

    So , that 's the end of the proof . OK , so you see , the idea is really the same as for Green 's theorem .

  10. 还记得,不久之前是怎么证明格林定理的吗?,我们将要做的,其实恰好是相同的套路。

    Well , if you remember how we prove Green 's theorem a while ago , the answer is we 're going to do it exactly the same way .

  11. 它说的是,如果S是一个封闭曲面,这和格林定理是一样的,我们需要完全封闭的。

    What it says is if S is a closed surface & Remember , it is the same as with Green 's theorem , we need to have something that is completely enclosed .

  12. 利用格林定理和移动脉动源建立了一个积分方程方法,并利用高阶方法对积分方程进行了离散和求解,用于计算波浪和水流在浅滩上发生的绕射现象。

    Applying the Green ′ s theorem and a moving oscillating source , an integral equation method is developed for predicting wave height on a shoal in current . The integral equation is discretized by a higher order element method .

  13. 本文通过运用格林定理与求解泊松方程的方法,证明了在空间分布两种介质(或多种介质)的情况下,在第一种介质中任一点的电场强度仍存在着简单比例关系:(?)

    The author who made use of Green theorem and the solution of Poiseuille 's equation proved that when two kinds of dielectric distribution in a space ( or more than one dielectrics ) a simple proportional ralation mentioned above is the first kind of dielectric : (?)

  14. 本文从静磁场与静电场具有很强的相似性出发,明确提出静磁场中亦存在格林互易定理,进而采用三种不同方法证明了静磁场中的格林互易定理。

    In this paper , We introduce Green 's reciprocity theorem in magnetostatic field and the different proofs of the theorem .

  15. 由渗流微分方程定解问题,利用格林互易定理从理论上导出了渗透率场敏感系数的计算公式,并借助于数值积分和差分方法给出了渗透率场敏感系数的离散形式。

    A formula of sensitivity coefficients in porous media is derived from fluid equations by Green 's reciprocity principle . The discrete form is given by using numerical integration and finite difference method .

  16. 该方法是基于并矢格林函数和互易定理求解电流积分方程的矩量法,适合于分析任意形状印刷线天线。

    A unified current integral equation is given on the basis of dyadic Green 's functions and the reciprocity theorem .

  17. 本文给出经典电磁场标量科西问题的格林函数褶积定理。

    This paper gives the convolution integral theorem of the Green 's function in the Cauchy 's problem of the scalar field in the classical electromagnetic field .

  18. 从格林矢量第二定理出发,基于微扰法、基尔霍夫驻留相位近似法和基尔霍夫标量近似法分别研究了高斯粗糙面的透射散射问题。

    Based on the second Green Vector Theorem , the electromagnetic wave transmission scattering from the rough surface with Gaussian correlation function is studied with the small perturbation method , Kirchhoff stationary approximation and Kirchhoff scale approximation .