正规矩阵
- 网络normal matrix;Normal Matrices
-
关于一类特殊复正规矩阵的Courant-Fisher定理
Courant-Fisher Theorem on a Kind of Special Complex Normal Matrix
-
设计多变量鲁棒控制系统的正规矩阵方法
The normal matrix approach to the design of multivariable robust system
-
不定内积下H正规矩阵的分解及其H极分解
Polar Decomposition and Decomposition of H-normal Matrices with Indefinite Inner Product
-
正规矩阵R及平滑因子α的选取
Choice of the regular matrix R and smoothing parameter α
-
本文对同时迭代法作两点注。其一,对文[1]中关于B-正规矩阵的同时迭代法所涉及的,解埃尔米特矩阵特征值问题的Jacobi方法进行改进,使计算量大为减少,收敛加快;
Two notes for simultaneous iteration of matrix eigenvalue problems are given : 1 , A new Jacobi-type method for solving Hermitian matrix eigenproblems is established .
-
本文对正规矩阵A,B的谱变分给出一些新的估计,证明了对于任何单调酉不变范数||·||,v(A,B)≤||A-B||。
Some new estimates are presented for the spectral variation of two normal matrices . We prove that for any monotone unitarily invariant norm | | · | | , v ( A , B )≤ | | A-B | | , where A and B are both normal .
-
研究的主要内容可以概括如下:1、鲁棒控制系统设计的正规矩阵方法与H∞设计方法的分析与比较,主要是在闭环系统鲁棒性、控制器简单性方面的优缺点。
The main content can be summarized as follows : ⅰ . Aanalysis and contrast about main the advantages and disadvantages in the respect of the robust stability of the closed-loop system and the simplicity of controller between the normal matrix and the H ∞ design approach are given .
-
航天器姿态控制的正规矩阵方法研究
Research on Normal Matrix Methodology of Attitude Control for Spacecraft
-
非正规矩阵的近似不变子空间的特征值估计的改进
An improvement to spectral variation of approximate invariant subspace of nonnormal matrices
-
实正规矩阵正定的判定条件
Several Sufficient Prerequisites for the Actual Number Regular Matrix Definite
-
基于反馈摄动的航天器姿态正规矩阵控制
Feedback Perturbation Based Normal Matrix Approach for Spacecraft Attitude Control
-
论正规矩阵的充要条件
On the necessary and sufficient conditions of regular matrix
-
正规矩阵的判定及其性质
The Decision of a Normal Matrix and Its Properties
-
另外又指出矩阵幂级数是正规矩阵的条件。
We shall also point the condition that matrix power series is normal .
-
不定内积下H-正规矩阵的几个性质
Several Properties of H-Normal in Indefinite Scalar Product
-
正规矩阵的稳定性及其特征值的估值方法
Stability of Normal Matrix and a Method to Estimate the Eigenvalue of the Matrix
-
关于正规矩阵的谱变分
On the Spectral Variation of Normal Matrices
-
2个四元数正规矩阵的同时对角化问题
Simultaneous diagonalization of two quaternion normal matrices
-
实正规矩阵的多项式表示
Representation of polynomial of real normal matrix
-
探讨了在不定内积下H-正规矩阵的四条性质。
In this paper , the author gives four properties of H-normal Matrices in indefinite Scalar product .
-
正规矩阵的任意扰动
Arbitrary perturbations of normal matrices
-
正定正规矩阵
The Positive Definite Normal Matrices
-
定义了正规矩阵,并给出了判断正规矩阵正定的若干方法。
This paper gives the definition regular matrix and offers several methods for deciding the regular matrix definite .
-
特征值(谱)对分析非正规矩阵或算子是一个不完美的工具。
Eigenvalues , more generally , spectra , are an imperfect tool for analyzing nonnormal matrices and operators .
-
给出实正规矩阵和一般实矩阵成为亚正定阵的一些充要条件。
Some efficient methods for judging whether a real matrix or a real regular matrix is metapositive definite are presented .
-
⑵.在四元数体上正规矩阵概念以及相似分解的基础上,给出了四元数正规矩阵的一些性质和判定准则。
⑵ . Based on the concept and similar decomposition of quaternion normal matrices , some properties and judge criterions of quaternion normal matrices are given .
-
同时,还利用弱直积的性质得到了四元数正规矩阵酉相似于准对角矩阵的充分条件。
Meanwhile , the sufficient conditions for that is given that quaternion normal matrices is unitary similarity to quasi-diagonal matrices by applying the properties of weak direct product .
-
根据矩阵理论可知,正规矩阵的特征值对其元的变化最不敏感,或者说它的条件数最小。
According to matrix theory , we can see that the norm matrix element changes the value with least sensitively , or in other word it own the least number condition .
-
利用正规矩阵和乘积可交换矩阵的重要性质,给出了亚正定矩阵的三个充分条件以及其合同矩阵的两个分解形式。
In this paper , we get several properties about this kind of matrix including three adequate conditions and two contract forms according to the important properties of regular matrix and exchangeable matrix .
-
利用正规矩阵性质和矩阵广义逆理论,分别得到期望极点可状态反馈正规配置和可静态输出反馈正规配置的充分必要条件。
Using the properties of normal matrix and generalized inverse theory of matrix , necessary and sufficient conditions are given to state feedback pole normal assignment and static output feedback pole normal assignment respectively .