点阵动力学

  • 网络lattice dynamics
点阵动力学点阵动力学
  1. 接下来使用点阵动力学对气体水合物展开了模拟研究,并将计算结果与非弹性中子散射的试验结果进行了对比。

    Lattice dynamics simulations are then carried out for gas hydrates and inelastic neutron scattering experimental results are employed for comparison .

  2. 应用点阵动力学的方法以及五对角对阵矩阵本征矢算法,考虑原子间次近邻相互作用,计算了一维无序体系的振动本征态的分布。

    Considering second-neighbour interaction , the distribution of vibrational eigenvectors in one-dimensional disordered system is calculated by means of lattice dynamics and a new algorithm for five diagonal matrix .

  3. 用点阵动力学方法计算立方金属的脆断表面能

    Evaluation of BRITTLE-FRACTURE surface energy in cubic metals by lattice dynamical method

  4. 本文在简谐近似下给出晶体点阵动力学矩阵元的一般计算公式。

    Under the assumption of harmonic approximation , the general formulae for calculating the lattice dynamical elements are derived .

  5. 本文分别从晶格振动理论和点阵动力学理论,来研究纳米颗粒比热容,建立了纳米颗粒比热容的理论模型,给出了相应的公式,并计算了纳米颗粒的热容;

    By using both of the crystal lattice vibrant theory and lattice kinetic theory , the heat capability of nanoparticles is researched in this dissertation .

  6. 对于比热,其高温展开形式与由点阵动力学得到的结果有同样的温度及体积依存关系。

    Our approximate results for specific heat at the high temperature range have the same temperature and volume dependence as that from the dynamical theory of crystal lattices .