不可约多项式

  • 网络irreducible polynomial;primitive polynomial
不可约多项式不可约多项式
  1. 二元有限域上的n次不可约多项式

    In dual galois field n irreducible polynomial

  2. 关于Q上不可约多项式的一个注记

    A note of irreducible polynomial on Q

  3. 有限域乘法由多项式乘法和模不可约多项式f(x)两步实现。

    The finite field multiplication requires two steps : polynomial multiplication and reduction modulo the irreducible f ( x ) .

  4. 以不可约多项式f(x)的幂链的构造为基础,给出了G(fe)中序列的周期及平移等价类定理的完整证明过程。

    Based on the structure of non-reducible polynomial'f ( x ) power chain , this paper puts forward unabridged proving process of the sequences'period and translation equivalence class in the G ( f ~ e ) .

  5. 本文根据有限域Fq上n次不可约多项式的一些性质,进一步对二元有限域上的n次不可约多项式的几个性质进行了引入及证明。

    This article according to in the galois field n irreducible polynomial some nature , further has carried on the introduction and the proof to in dual galois field n irreducible polynomial several nature .

  6. 首先,定义一个从Zq到Zp的环的同态,并且证明多项式x~n-11在Zq上能被唯一分解成有限个一些两两互素的基本不可约多项式的乘积。

    At first , we define a ring homomorphism from Z_q to Z_p , and prove that the polynomial x ~ n-1 over Z_q can be uniquely factored into a product of finitely many pair-wise coprime basic irreducible polynomials over Z_q .

  7. 本文给出Galois环R上的基本不可约多项式f(x)的根的具体表达式和其阶的联系;

    In this paper , we present a link between the representation of a root of a basic irreducible polynomial f ( x ) over Galois ring and its order , and derive two algebraic discriminants respectively for primitive polynomials and sub primitive polynomials .

  8. 与其他设计只支持固定域和固定多项式相比较,我们的乘法器能够支持160位到256位的任何有限域GF(2~n)和美国计量标准(NIST)推荐的所有不可约多项式。

    In contrast to other designs that only support fixed field and fixed irreducible polynomials , our multiplier can support every finite field GF ( 2 ~ n ) which n from 160 to 256 and irreducible polynomials recommended by the National Institute for Standards and Technology ( NIST ) .

  9. 提出了一种应用于椭圆曲线密码体制中的有限域乘法器结构,基于已有的digit-serial结构乘法器,利用局部并行的bit-parallel结构,有效地省去了模约简电路,使得乘法器适用于任意不可约多项式;

    A finite field multiplier architecture is proposed in this paper for ECC . Based on previous digit-serial multiplier architecture , it uses bit-parallel architecture of local parallel to eliminate reduction modulo circuit effectively , and the multiplier architecture also be the same with arbitrary irreducible polynomials .

  10. 完全找到整系数不可约多项式的一种新方法

    A New Method to Thoroughly Find the Irreducible Polynomials of Integer Coefficient

  11. 判定有限域上不可约多项式及本原多项式的一种高效算法

    An Efficient and Deterministic Algorithm to Determine Irreducible and Primitive Polynomials over Finite Fields

  12. 为了简化,采用特殊不可约多项式来产生有限域。

    To simplify reduction modulo , the special polynomials are used to generate finite field .

  13. 基于素性检验思想的不可约多项式判断

    Test of Irreducible Polynomials Based on Primality-Test

  14. 有限域上的多项式有分圆多项式和不可约多项式,其中各由数条原理构成。

    Polynomials over the finite field include cyclotomic polynomials and irreducible polynomials constructed on different theories .

  15. 有限域上的不可约多项式

    The Irreducible Polynomials over Finite Fields

  16. 关于整系数不可约多项式

    Irreducible Polynomial of Integral Coefficient

  17. 这样,为扩频通信与信道密码利用不可约多项式提供了一种实用的算法。

    Consequently a practical algorithm is provided for spread spectrum communication and channel code to use irreducible polynomials .

  18. 用二次判别方法识别蛋白质β-发夹模体有理数域上二元不可约多项式的判别

    RECOGNITION OF β - HAIRPIN MOTIFS IN PROTEINS BY USING QUADRATIC DISCRIMINANT Judgement Method of Irreducible Polynomial in Two Variables

  19. 该算法利用了特征为2的有限域中的不可约多项式第二项次数较小的特点。

    The algorithm applied the characteristic of the small second item 's degree of irreducible polynomial in characteristic 2 finite field .

  20. 本文给出了Q[x]上5次不可约多项式的伽罗华群的一种计算方法。

    A method to calculate the Galois group of an irreducible polynomial of degree 5 in Q [ x ] is given .

  21. 采用多项式基表示有限域中的元素,不可约多项式选取三项式。

    The operands of field elements are represented by polynomial basis . The reduction polynomial of a trinomial is represented by the binary vector .

  22. 有理数域上二元不可约多项式的判别第二审人民法院的判决、裁定,是终审的判决、裁定。

    Judgement Method of Irreducible Polynomial in Two Variables a judgment or ruling by the people 's court of second instance is one of final instance .

  23. 本文给出几个判断整系数不可约多项式的定理,比文[1]给出的定理更具有一般性。

    This paper offers several theorems on judging irreducible polynomial of integral coefficient , which has more generality than those given out in the article ( 1 ) .

  24. 通过本文的研究,还发现选择合适的不可约多项式可以设计出精巧的立方电路,因此本文给出了212个推荐使用的不可约多项式。

    This paper also present 212 recommended irreducible polynomials . Because through this study , it is found that appropriate irreducible polynomials can help one construct delicate cubic circuits .

  25. 而有限域上的不可约多项式,即有限域上多项式环的素元,对于构造有限域和计算有限域的元素个数又是必不可少的。

    The irreducible polynomials over finite fields , which are the prime elements of the rings of polynomial , are indispensable for the construction of finite fields and computing with the elements of finite fields .

  26. 该程序能够测试任意整系数多项式是否可约,并给出了满足不可约整系数多项式的Eisenstein素数值。

    This procedure not only can test whether arbitrarily whole coefficient polynomial can invite or not , but also can give the prime number to satisfy the Eisenstein prime .

  27. 本文研究整系数多项式的不可约因式,给出了低次不可约多项式的判别的一种方法和一些不可约问题的处理方法。

    The paper available mapping of integral coefficient polynomial and rational number , obtain factorization from factorization of polynomial by the way of sieve in true fraction series .