二项分布

èr xiànɡ fēn bù
  • binomial distribution
二项分布二项分布
  1. 负二项分布中未知参数p的一个区间估计

    An interval estimation of unknown parameter p in negative binomial distribution

  2. 链接是否出现服从概率为p的二项分布,p为所有特征值的函数。

    The existence of link follows binomial distribution with probability p. p is a function of all features .

  3. 二项分布中试验次数n的估计及其可容许性

    Estimation of the Number of Trials n in the Binomial Distribution and Its Admissibility

  4. 关于负二项分布参数k值的讨论

    A discussion on parameter k of negative binomial distribution

  5. 数据采用二项分布齐性检验的G统计学方法分析。

    The data were analysed with G test of homogeneous in statistical binomial distribution .

  6. 二项分布参数N的一种Bayes估计

    Ano the R Bayes estimation of the binomial parameter n

  7. 每两组经二项分布检验显示A组与C组之间差异有显著性(P<0.05)。

    Significant difference of clinical effect were shown between group A and group C by binomial distribution test ( P < 0.05 ) .

  8. 关于负二项分布的Q控制图

    Q control chart for negative binomial distribution

  9. 求解Poisson分布和二项分布高阶矩的代数方法

    Algebraic Method of Solving Nth Moment of Poisson and Binomial Distribution

  10. 二项分布的Bayes截尾序贯检验方法及其应用

    Bayes cutting sequential test method of binomial distribution and its application

  11. 方法Poisson分布,负二项分布,混合Poisson分布。

    Methods Poisson distribution , negative binomial distribution , mixed Poisson distribution .

  12. 二项分布Bayes序贯检验的平均试验数

    The Average Sample of Bayes Sequential Test for Binomial Distribution

  13. 传染病链二项分布资料的Poisson回归模型

    Poisson Regression Models for Chain Binomial Infectious Disease Data

  14. 本文讨论了二项分布与贝塔分布的某种联系,又通过F分布的分位点给出二项分布参数P的置信限。

    This paper discusses relation of Binomial discusses and Beta-distribution , and presents confidence limits of binomial distribution parameter expressed with F-distribution divide point .

  15. 关于二项分布、Poisson分布和几何分布的高阶矩的递推公式

    Recursive Formula of the Nth Moment of Binomial , Poisson Distribution and Geometric Distribution

  16. 关于二项分布参数经验Bayes估计的收敛速度的一点注记

    A Note on the Empirical Bayes Estimation for the Parameter of the Binomial Distribution

  17. 方法:用二项分布(p+q)n数学模型拟合,用χ2进行配合适度检验。

    Methods Binominal distribution ( p + q ) n is simulated in a method of mathematical model with χ 2 in a proper test .

  18. RFID通信时序中,标签在每一帧中选择时隙满足二项分布随机过程。

    In every frame RFID communication sequence , the process that tag selects the slot is a binomial random process .

  19. 二项分布基于logit变换的近似信仰推断

    Approximate fiducial inference for binomial distributions based on the logit transformation

  20. Stirling公式的改进及二项分布概率的近似计算

    Improvement of Stirling 's formula and approximate calculation of probability of binomial distribution

  21. 结果利用负二项分布和二项分布进行拟合,所得统计学检验P值分别为0.2801和0.0007,表明该数据服从负二项分布、不服从二项分布。结论血吸虫病患病呈家庭聚集性。

    Results P values for fitting negative binomial distribution and binomial distribution are respectively 0.2801 and 0.0007 . Conclusion The infection of schistosomiasis japonica in Hubei province has a phenomenon of familial aggregation .

  22. 研究家庭聚集性常用的统计方法有二项分布、负二项分布和G检验等。

    The commonly used statistical methods for the researches on family clustering are the binomial distribution , the negative binomial distribution and the G examination and so on .

  23. 而抗-HBs、抗-HBc阳性者以及HBV感染者的家庭分布符合二项分布,无家庭聚集性。

    However , the distribution of anti-HBs , anti-HBc and HBV infection in these families fitted well with the binomial distribution , indicating absence of familial clustering .

  24. 用二项分布配合χ2检验方法对7904个家庭、30713人进行统计分析。结果表明,本区人群感染最重的蛔虫和蛲虫均有家庭聚集性(经χ2检验,P<0.001)。

    A family clustering analysis on Ascaris lumbricoides and Enterobius vermicularis infections was performed in Inner Mongolia covering 30 713 residents from 7 904 families , by using binomial distribution and χ 2 test for significance reckoning .

  25. 文献[2]中给出了抽样分布为二项分布、先验分布为Beta分布的Bayes决策准则。

    The Bayes decision criterion of sample distridution as binomial distridution and prior distribution as Beta distribution is given in document ( 2 ) .

  26. 构造一类特殊多项式及级数,由此推导了二项分布,泊松分布及几何分布K阶中心矩的递推计算公式,得到了这几个公式的统一形式

    In this paper , according to constructing multinomial and series of functions concludes the counting formula of K-order centeral moment of binomial . poisson and geometric distribution and common form of these formula

  27. 晚血在人群中的分布超越了Poisson分布的概率范围而与负二项分布一致。

    The observed distribution of AS was beyond the probability of the zero truncated Poisson distribution , but consistent with the zero truncated negative binomial distribution .

  28. 利用Poisson近似和正态近似,本文导出了二项分布,负二项分布以及二项~负二项分布环境因子的经典近似限。

    Approximate classical confidence bounds for environmental factor of binomial , negative binomial andbinomial / negative binomial distribution are derived by using Poisson approximation and normal approximation .

  29. 二项分布参数的经验Bayes估计Ⅰ&损失函数为(p-d)~2的情况

    Empirical Bayes Estimates for Binomial Parameters I & the Case of Loss Function ( p-d ) ~ 2

  30. 家庭中乙型肝炎表面抗原携带者的Neyman分布与负二项分布

    The Neyman Distribution and Negative Binomial Distribution of HBsAg Carriers in Families