二项式定理
- 网络The Binomial Theorem
-
[binomial theorem] 按照公式 (x+y) n = x n +c n 1 + x n-1 y +c 2 n x n-2 +c 1 n xy n-1 +y n ,二项式可取任意次的数学定理
-
如果按二项式定理展开来计算平方根,P的计算可以简化。
Evaluation of P is simplified if the square root terms are expanded by the binomial theorem .
-
定理g称为二项式定理。
Theorem g is called binomial theorem .
-
用构造体积、应用二项式定理、利用定积分的三种方法,导出正整数前n项k方和公式,并对此进行推算。
Three methods-structural volume , binomial formula and definite integral-can be employed to derive the formula for the snm of the K power of positive N term integer . The calculation can be made on the basis of them .
-
我们主要利用q-二项式定理和Sears的两个关于3φ2的变换公式,得到两类新的q-正整数。这些q-正整数可以扩展为多个q-二项式乘积展开式的系数的一种特殊情况。
Then by using q-binomial theorem and Sears 's transformation formula for _3 φ _2 , we show two new families of g-positive integers , which are further extended to a special case of the coefficients of the product of q-binomial polynomials .
-
二项式定理的概率证明
A Proving Method on the Theorem of Binomial in Probability
-
著名数学家牛顿最早证明了二项式定理。
The famous mathematician Newton first proved the binomial theorem .
-
他给他的学生们讲授二项式定理的奥秘。
He initiated his pupils into the mysteries of the binomial theorem .
-
关于矩阵的二项式定理其应用
On Binomial Theorem of Matrix and its Application
-
二项式定理的赫尔茨推广
Hurwitz 's generalization of binomial theorem
-
二项式定理的阿贝尔推广
Abel 's generalization of binomial theorem
-
我们还要揭示二项式定理更为丰富的内涵。
There is a wealth of information in the binomial theorem that we have yet to exploit .
-
可换矩阵二项式定理的应用
Binomial Theorem of Matrix
-
类比关于数式的二项式定理,导出关于矩阵的二项式定理,并用数学归纳法予以证明,最后举例说明关于矩阵的二项式定理的应用。
Compared to digital binomial function , matrix binomial function is derived and proved with induction method and the application of it is illustrated with examples .
-
高考作文教学初探探讨高考中涉及二项式定理的试题的解法
An Initial Probe into the Teaching of Composition for Matriculation Examination A Research into the Solving Processes to Problems on Newton 's Binomial Theorem in the College Matriculation Examination
-
到14世纪,中国数学家们在代数、数的方程解答和基础二项式定理方面都取得了重大发展。
And by the 14th century Chinese mathematicians had made significant advances in algebra , in the numerical solution of equations and in the rudiments of the binomial theorem .