分离公理

  • 网络separation axiom;Axiom der Aussonderung
分离公理分离公理
  1. 定义了不分明拓扑空间的拟R0分离公理。

    The definition of the pre-R0 separation axiom was introduced .

  2. I-fuzzy拓扑中的分离公理

    Separation Axiom in I-Fuzzy Topology

  3. 对Fuzzy拓扑空间与经典拓扑空间的分离公理作了比较,讨论了Fuzzy拓扑空间的分离公理的一些基本性质;

    In this paper , the author compares the fuzzy topology interspace with the classic topology interspace separating axiom , discusses some basic kinds about the fuzzy topology interspace separating axiom and define its Sober character .

  4. 分离公理,尤其是T2公理的无点刻划是无点拓扑理论中没有统一结果的问题。

    The pointless description of axioms of separation , especially T2 axiom is a question without final result in pointless topology .

  5. 利用德摩根子代数概念以及紧性引进了德摩根拓扑代数的局部紧,研究了它与分离公理之间的关系,并给出了一个类似于Baire范畴定理的定理。

    On the basis of the De Morgan subalgebra and the compactness , the local compactness for a De Morgan algebra of topology is introduced and the relations between it and the separation axioms are investigated . A theorem similar to classic Baire Category theorem is established .

  6. T1与T2之间的几个分离公理

    On several axioms of separation between T_1 and T_2

  7. 拓扑中分离公理的统一处理

    A Unified Treatment of Separation Axioms in Topology

  8. 不分明拓扑空间的分离公理与紧性

    Separation axioms and compactness in fuzzy topological spaces

  9. 不分明化拓扑中的几乎分离公理

    Almost Separation Axiom in Fuzzifying Topology

  10. 分离公理的一般形式

    The General Form of Separation Axiom

  11. 网的收敛与分离公理

    Convergence of Net and Separation Axiom

  12. F-拓扑空间的分离公理

    Seperation Axioms in F-Topological Spaces

  13. 完全正则性分离公理

    Complete regularity separation axiom

  14. 将分离公理推广为半分离公理,讨论了半分离空间在同胚映射、强半开映射、弱半开映射、半开映射和弱连续映射下的有关性质。

    Axiom of Separation is generalized to Axiom of Semi-Separation and properties of some mapping of semi-separated space are discussed for homomorphic mapping , strongly semi-open mapping , weakly semi-open mapping , semi-open mapping and weakly continuous mapping .

  15. 本文在不分明化拓扑空间中,利用半开集、半邻域和半闭包等概念导入了S0-,S1-,S2-,S3-,S4-分离公理,并且给出这五个分离公理的等价命题。

    S 0 , s 1 , s 2 , s 3 , s 4 separation axioms is introduced in terms of semi open set , semi neighborhood and semi closure in fuzzifying topology and equivalenct propositions of the five axioms are given .