分离公理
- 网络separation axiom;Axiom der Aussonderung
-
定义了不分明拓扑空间的拟R0分离公理。
The definition of the pre-R0 separation axiom was introduced .
-
I-fuzzy拓扑中的分离公理
Separation Axiom in I-Fuzzy Topology
-
对Fuzzy拓扑空间与经典拓扑空间的分离公理作了比较,讨论了Fuzzy拓扑空间的分离公理的一些基本性质;
In this paper , the author compares the fuzzy topology interspace with the classic topology interspace separating axiom , discusses some basic kinds about the fuzzy topology interspace separating axiom and define its Sober character .
-
分离公理,尤其是T2公理的无点刻划是无点拓扑理论中没有统一结果的问题。
The pointless description of axioms of separation , especially T2 axiom is a question without final result in pointless topology .
-
利用德摩根子代数概念以及紧性引进了德摩根拓扑代数的局部紧,研究了它与分离公理之间的关系,并给出了一个类似于Baire范畴定理的定理。
On the basis of the De Morgan subalgebra and the compactness , the local compactness for a De Morgan algebra of topology is introduced and the relations between it and the separation axioms are investigated . A theorem similar to classic Baire Category theorem is established .
-
T1与T2之间的几个分离公理
On several axioms of separation between T_1 and T_2
-
拓扑中分离公理的统一处理
A Unified Treatment of Separation Axioms in Topology
-
不分明拓扑空间的分离公理与紧性
Separation axioms and compactness in fuzzy topological spaces
-
不分明化拓扑中的几乎分离公理
Almost Separation Axiom in Fuzzifying Topology
-
分离公理的一般形式
The General Form of Separation Axiom
-
网的收敛与分离公理
Convergence of Net and Separation Axiom
-
F-拓扑空间的分离公理
Seperation Axioms in F-Topological Spaces
-
完全正则性分离公理
Complete regularity separation axiom
-
将分离公理推广为半分离公理,讨论了半分离空间在同胚映射、强半开映射、弱半开映射、半开映射和弱连续映射下的有关性质。
Axiom of Separation is generalized to Axiom of Semi-Separation and properties of some mapping of semi-separated space are discussed for homomorphic mapping , strongly semi-open mapping , weakly semi-open mapping , semi-open mapping and weakly continuous mapping .
-
本文在不分明化拓扑空间中,利用半开集、半邻域和半闭包等概念导入了S0-,S1-,S2-,S3-,S4-分离公理,并且给出这五个分离公理的等价命题。
S 0 , s 1 , s 2 , s 3 , s 4 separation axioms is introduced in terms of semi open set , semi neighborhood and semi closure in fuzzifying topology and equivalenct propositions of the five axioms are given .