反向传播

  • 网络Back Propagation;Back-Propagation;Backpropagation
反向传播反向传播
  1. 方法:应用反向传播神经网络(BP神经网络)模型。

    Method : A back propagation neural networks was used .

  2. 对人工神经网络,详细推导了误差反向传播(BP)算法,并对几种改进的BP算法作了介绍。

    The back propagation neural networks were particularly constructed .

  3. 神经网络反向传播模型用于CmI的能级分类

    Classification of Cm_ ⅰ Energy Levels Using the Back-propagation Neural Network

  4. 神经网络采用带有动量项和自适应学习率的反向传播算法(BP)进行训练。

    The system adopts back-propagation learning algorithm with momentum .

  5. 3)在神经网络中采用了BP(反向传播)算法。

    3 ) Select BP ( Back - Propagation ) algorithm in nerve network .

  6. 最后利用反向传播(BP)神经网络进行纹理的分类识别。

    The texture classification is completed with back propagation ( BP ) neural network .

  7. 使用自适应谐振理论(ART)和误差反向传播(B)两种神经网络,开发了汽轮发电机组振动故障诊断模型。

    The vibrating fault diagnosis system for turbo-generator unit based on ART and BP network is developed in this work .

  8. 神经网络的BP(误差反向传播)学习不法是针对多层前债结构的神经网络进行研究而·提出的一种有效的学习算法。

    The back propagation ( BP ) learning algorithm of Artificial Neural Net was briefly reviewed .

  9. 探讨了利用反向传播神经网络和BP算法确定市场响应函数的方法。

    This paper discusses backpropagation neural network model and BP algorithm to determine market response functions .

  10. 本文中人工神经网络模型主要是BP反向传播误差算法。

    In this article the nerve network model mainly is the BP reverse propagated error algorithm .

  11. 提出了反向传播人工神经网络(BPANN)参数学习的模拟退火回火算法。

    An annealing backfire algorithm to get the parameters of BP ANN was presented .

  12. 基于误差反向传播算法的OFDM系统频域均衡

    Frequency-domain Equalization in OFDM System Based on the BP Algorithm

  13. 研究确立了反向传播BP模型在测算人员编制中的应用方法及技术路线。

    The method and technical route of the B P model applied to estimate personnel establishment is established .

  14. 在本文中将我们改进的圆形反向传播网络模型(ImprovedCircularBackPropagation&ICBP)应用于时间序列预测,进行了单步和多步时间序列预测研究。

    In this article , we applied our improved circular back-propagation ( ICBP ) network to single step and multi-steps time series prediction respectively .

  15. 参数辨识中,采用了反向传播学习算法(即BP算法)。

    BP ( back propagation ) algorithm has been employed for the parameter identification of the fuzzy neural network .

  16. 研究了在确定了结构损伤区域的条件下,应用反向传播(BP)神经网络同时实现对具体损伤构件及其损伤程度识别的方法。

    A method for identifying the damaged member and damage extent simultaneously by a back-propagation neural network is investigated .

  17. 最后利用前馈神经网络的误差反向传播模型(BP)网络的外延和信息表达能力解决了非储层的定量识别。

    And the extrapolation and information expressivity of BP network is a great help in quantitative identification for non-reservoir .

  18. 基于反向传播神经网络模型(BP)建立了3层网络系统用于处理织物风格信号。

    Based on the Back-Propagation neural network model , a three-layer network system is established to process fabric handle signals .

  19. 对刘国东等提出的BP(误差反向传播)神经网络归一化模型进行了改进,得到了适合钢轨交流闪光焊落锤质量预测的BP神经网络归一化模型。

    An improved back propagation ( BP ) neural networks model was proposed based on the presented by Liu Guo-dong .

  20. 基于反向传播(BP)神经网络,建立了民用航空航段安全风险评估模型。

    This research built a flight phase safety risk assessment model basing on Back Propagation ( BP ) neural network .

  21. 用反向传播神经网络求解J积分

    A method for calculating J-integral through neural networks

  22. 结合多层前馈式反向传播(BackPropagation&BP)神经网络,建立了基于腐蚀形貌特征的腐蚀诊断方法。

    A new method for corrosion type identification and corrosion rate prediction is developed based on the corrosion characteristics extraction combining with Back Propagation ( BP ) neural networks .

  23. 反向传播这一算法把支持delta规则的分析扩展到了带有隐藏节点的神经网络。

    Back-propagation is an algorithm that extends the analysis that underpins the delta rule to neural nets with hidden nodes .

  24. 选用反向传播神经网络模型(BP网络),网络识别所需要的特征参数能够反映木材缺陷的全部特征。

    Back propagation networks was used to recognize all the characteristic parameters , which can reflect all the characteristics of wood defects .

  25. BP神经网络作为一种基于误差反向传播的多层前向网络,最主要的特性是具有非线性映射功能,可以逼近任意的非线性函数。

    As the most important characteristic of BP neural network is the nonlinear mapping function , it can approximate any nonlinear function .

  26. 首先研究了将改进遗传算法和误差反向传播(BP)算法相结合的混合算法来训练人工神经网络。

    The application of hybrid algorithm which combines improved genetic algorithm and error back-propagation algorithm in artificial neural network training is studied first .

  27. 介绍了人工神经网络(ANN)的主要特点及误差反向传播网络(BP)的工作原理。

    Main characteristics of Artificial Neural Network ( ANN ) and the principle of back-propagation algorithm ( BP ) were introduced .

  28. 这一训练方法被称之为HMM的反向传播训练方法。

    This approach to the training of HMM is called back propagation training approach .

  29. 最后,本文采用了基于反向传播算法(BP算法)的神经网络系统来识别字符,其优点是结构设计简单,自学习能力较强,识别速度快。

    Last the article make the network with BP Algorithm to recognize the character , the strongpoint is great self-studying ability and fast speed .

  30. 利用误差反向传播(BP)人工神经网络,建立了海域船舶溢油风险程度甄别的评价模型。

    An artificial neural network is made to identify the oil spill risk degree of the different sub-areas of a sea area being interested .