可数集
- denumerable set;countable set;enumerable set;countably infinite set
-
结果表明边值问题的特征值构成一个可数集,并且特征值趋向于无穷大。
The results show that the eigenvalues of the boundary-value problem form a denumerable set , and the eigenvalue approaches infinity .
-
把有限集中的置换推广到可数集上,引入基轮换、轮换及变换的可数次合成等概念的定义。
The permutation of the finite set is introduced into the denumerable set as well as the definition of the basic rotation , the rotation and the composition of the countability .
-
f的回归点集的闭包中的非回归点的集合为可数集。
R is countable , where R denotes the set of recurrent points .
-
若Γ-R≠φ,则Γ-R为不可数集;
If Γ - R is not empty then it is uncountable .
-
一类可数紧集的计盒维数
Box Dimension on Class A of Countable Compact Sets
-
可数Fuzzy紧集的性质
Properties of Countably Fuzzy Compact Sets
-
定理2.2.6.存在I2上的一个温顺的右移同胚fa,使得fa有一个基数为a的1-混沌集,但没有不可数的混沌集。
Theorem 2.2.6 . There exists a docile right-translation homeomorphism f_a from I ~ 2 × I ~ 2 to itself such that f_a have a 1 & scrambled set with cardinality a but has no uncountable scrambled set .
-
假设状态集可数,行动集为紧的非空Borel集。
Where the state set is countable , the action set is a non-empty Borel compact subset of a complete separable matric space .
-
作为应用,我们得出Devaney's混沌性质是严格强于具有不可数的s-Scrambled集。
As an application , it is shown that Devaney 's chaos are stronger than the existence of uncountable s-Scrambled sets .
-
由回归点构成的不可数紊动集的存在性
Existence of Non-Denumerable Chaos Set Constructing by Recurrent Points
-
该文对单边符号空间上的转移自映射进行了讨论,证明了在非弱几乎周期的回复点集上存在不可数的SS混沌集。
In this paper , the authors discuss the shift of the one-sided symbolic space and prove that there exists an uncountable SS chaotic set , in which each point is recurrent , but is not weakly almost periodic .
-
主要讨论了《实变函数论》中定理:“可数个可数集之并是可数集”的多种证明。
This paper give the proofs of the Keal Function " a theorem that sum aggregate enumerable set is countable aggregate " .
-
在对称可微广义凸函数、起作用约束指标集为无穷可数集的情形下,得到了半无限规划的几个最优性充分条件和对偶性定理。
In this peper some sufficient optimality conditions and duality theorems are obtained for a semi-infinite programming problem in the symmetrically differentiable generalized convex functions and the set of active constraints index is infinite countable set case .