圆锥曲线

yuán zhuī qū xiàn
  • conical section;conic
圆锥曲线圆锥曲线
  1. 关于过特殊点的圆锥曲线弦的问题

    Problems about the Conical Section Chord through a Special Point

  2. 圆锥曲线的曲率特性及其在刀具刃磨中的应用

    Curvature Character of Conical Section and Its Application on Cutter 's Grinding

  3. 圆锥曲线电流在焦点处的磁感应强度B

    The magnetic induction at the focus of conic-electric-current

  4. 环Zn上圆锥曲线数字签名的研究

    Research on Digital Signatures Based on Conic Curves over Ring Z_n

  5. 基于双难题的环Zn上圆锥曲线的数字签名

    Signature on conic curve over Z_n based on two hard problems

  6. 基于环Zn上的圆锥曲线数字签名和多重数字签名

    Digital Signature and Multiple Digital Signatures Based on the Conic Curve over Z_n

  7. 提出了一个基于环Zn上的圆锥曲线公钥密码体系的数字签名方案。

    A digital signature scheme was designed on the public-key cryptography of conic curve over Z_n .

  8. 环Zn上圆锥曲线盲签名的公钥密码协议及在电子选举中的应用

    The Public-key Cryptosystem of Blind Signature Based on Conic Curve over Z_n and the Applications in Electronic Election

  9. 同时,还可以建立模n的圆锥曲线群,构造等价于大整数分解的密码。

    Moreover , a group modulo n on conic curve can be formed , on which we can construct cryptogram similar to RSA .

  10. 本文首先分别介绍了基于有限域Fp上的圆锥曲线Cp(a,b)和基于环Zn上的圆锥曲线Cn(a,b)的定义和性质。

    Firstly , this thesis introduces the basic definition and characters of conic curve over finite field Fp and ring Z n.

  11. N体问题不仅存在做匀速圆周运动的正多边形解,而且存在非匀速运动的正多边形解,这就是圆锥曲线解。

    Besides the regular polygon solutions of uniform circular motions , the regular polygon solutions of non-uniform motions also exist for N-body problems , which is known as conic solutions .

  12. 文〔1〕介绍了无心型圆锥曲线化简方法,本文用BASIC语言给出这种化简方法的程序设计。

    Paper [ 1 ] has discussed a simplified method for a hollow circular cone curve , Here we use Basic Language in the programme and we think this programme can pass in 486 computer 's run .

  13. 这些圆锥曲线密码系统的安全性是基于C(Fp)上离散对数的计算,较椭圆曲线密码系统更易于设计与实现。

    The security of these conic curve cryptosystem based on the discrete logarithm problem on conic curve over C ( F_p ) and it is much easier to design and realize than elliptic curve cryptosystem .

  14. Eisenstein环上的圆锥曲线公钥密码系统

    Public Key Cryptosystem for Conic Curve over Eisenstein Ring

  15. Clairaut方程在建立圆锥曲线方程中的应用

    The Clairaut Equation Applied in the Establishment of Conies

  16. 本文研究利用Clairaut方程建立圆锥曲线方程的方法。

    This article studied the application of the Clairaut equation in the establishment of the conic equation .

  17. Kepler问题的解可以很容易解出,它们是圆锥曲线&椭圆,抛物线,双曲线和直线。

    You can then calculate rigorously their future movements . The solutions of the Kepler problem are conic sections & circles , ellipses , parabolas , and hyperbolas and straight line .

  18. 本文提出的NAF-2k进制方法也应用到圆锥曲线数乘算法中。

    NAF-2k method proposed in the paper is also applied to scalar multiplication algorithm in CCC .

  19. 实际制件应用中发现,PIC文件采用直线、圆锥曲线、三次Bezier曲线描述2维截面轮廓,在精度、文件大小、处理时间等方面都优于线性近似描述格式。

    During the realistic application of forming parts , the authors found that , lines , conic arcs and cubic Bezier curves are used to describe 2D sections in PIC files , which it is better than linear description formats whether in precision , file size or processing time .

  20. 配极变换在圆锥曲线教学中的应用

    The application of grade-matching shift in the teaching of cone curve

  21. 设有一组平行线与圆锥曲线相交。

    Consider a family of parallel lines that cut the conic .

  22. 《化简圆锥曲线方程的一种方法》的注记

    A Note on A Method of Reducing Equation of Conic Section

  23. 关于伴生圆锥曲线的切线方程

    On the Tangent Equations of the " Companion Taper Curve "

  24. 亚婆罗尼主要地是以他对于圆锥曲线的研究而闻名的。

    Apollonius is chiefly noted for his work on conic sections .

  25. 圆锥曲线的切线段的中点轨迹

    Locus of central point of the conic sections ' segmental tangent line

  26. 圆锥曲线的参数求解及其形态解析

    The Parameter of Section Solves and the Analysis of a Curved State

  27. 圆锥曲线的公切圆作图法

    A new method to draw conical curves by the common tangent circle

  28. 本文介绍圆锥曲线中平分弓形面积的一个性质。

    This paper introduces Averaging arch area property of conic .

  29. 基于转移时间约束的异面圆锥曲线变轨算法

    A noncoplanar conic transfer arithmetic based on transfer time constraint

  30. 两圆锥曲线公切线的图解方法

    A Graphic Method of Determining Two Conic Sections Common Tangents